Kramer G, Mitteregger D, Marberger M (2007) Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol 51(5):1202–1216 https://doi.org/10.1016/j.eururo.2006.12.011
CAS
PubMed
Google Scholar
De Nunzio C, Presicce F, Tubaro A (2016) Inflammatory mediators in the development and progression of benign prostatic hyperplasia. Nat Rev Urol 13(10):613–626 https://doi.org/10.1038/nrurol.2016.168
PubMed
Google Scholar
Miah S, Catto J (2014) BPH and prostate cancer risk. Indian J Urol IJU J Urol Soc India 30(2):214–218 https://doi.org/10.4103/0970-1591.126909
Google Scholar
De Nunzio C, Kramer G, Marberger M, Montironi R, Nelson W, Schröder F, Sciarra A, Tubaro A (2011) The controversial relationship between benign prostatic hyperplasia and prostate cancer: the role of inflammation. Eur Urol 60(1):106–117 https://doi.org/10.1016/j.eururo.2011.03.055
PubMed
Google Scholar
Alcaraz A, Hammerer P, Tubaro A, Schröder FH, Castro R (2009) Is there evidence of a relationship between benign prostatic hyperplasia and prostate cancer? Findings of a literature review. Eur Urol 55(4):864–873 https://doi.org/10.1016/j.eururo.2008.11.011
PubMed
Google Scholar
Maly IV, Hofmann WA (2018) Calcium and nuclear signaling in prostate cancer. Int J Mol Sci 19(4) https://doi.org/10.3390/ijms19041237
Wasilenko WJ, Cooper J, Palad AJ, Somers KD, Blackmore PF, Rhim JS, Wright GL, Schellhammer PF (1997) Calcium signaling in prostate cancer cells: evidence for multiple receptors and enhanced sensitivity to bombesin/GRP. Prostate 30(3):167–173 https://doi.org/10.1002/(sici)1097-0045(19970215)30:3<167::aid-pros4>3.0.co;2-j
CAS
PubMed
Google Scholar
Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268(5208):239–247 https://doi.org/10.1126/science.7716515
CAS
PubMed
Google Scholar
Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529 https://doi.org/10.1038/nrm1155
CAS
PubMed
Google Scholar
Zhou Y, Gu P, Li J, Li F, Zhu J, Gao P, Zang Y, Wang Y, Shan Y, Yang D (2017) Suppression of STIM1 inhibits the migration and invasion of human prostate cancer cells and is associated with PI3K/Akt signaling inactivation. Oncol Rep 38(5):2629–2636 https://doi.org/10.3892/or.2017.5961
CAS
PubMed
PubMed Central
Google Scholar
Cui C, Merritt R, Fu L, Pan Z (2017) Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 7(1):3–17 https://doi.org/10.1016/j.apsb.2016.11.001
PubMed
Google Scholar
Fisher B, Wolmark N, Rockette H, Redmond C, Deutsch M, Wickerham DL, Fisher ER, Caplan R, Jones J, Lerner H (1988) Postoperative adjuvant chemotherapy or radiation therapy for rectal cancer: results from NSABP protocol R-01. J Natl Cancer Inst 80(1):21–29 https://doi.org/10.1093/jnci/80.1.21
CAS
PubMed
Google Scholar
Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Wolmark N (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol Off J Am Soc Clin Oncol 26(5):778–785 https://doi.org/10.1200/JCO.2007.15.0235
Google Scholar
Berridge MJ (1995) Calcium signalling and cell proliferation. BioEssays News Rev. Mol Cell Dev Biol 17(6):491–500 https://doi.org/10.1002/bies.950170605
CAS
Google Scholar
Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8(5):361–375 https://doi.org/10.1038/nrc2374
CAS
PubMed
Google Scholar
Michelangeli F, East JM (2011) A diversity of SERCA Ca2+ pump inhibitors. Biochem Soc Trans 39(3):789–797 https://doi.org/10.1042/BST0390789
CAS
PubMed
Google Scholar
Lipskaia L, Lompré A-M (2004) Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol Cell 96(1):55–68 https://doi.org/10.1016/j.biolcel.2003.11.001
CAS
PubMed
Google Scholar
Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257 https://doi.org/10.1038/35025220
CAS
PubMed
Google Scholar
Sporn MB, Harris ED (1981) Proliferative diseases. Am J Med 70(6):1231–1235 https://doi.org/10.1016/0002-9343(81)90832-9
CAS
PubMed
Google Scholar
Rayford W, Noble MJ, Austenfeld MA, Weigel J, Mebust WK, Shah GV (1997) Muscarinic cholinergic receptors promote growth of human prostate cancer cells. Prostate 30(3):160–166 https://doi.org/10.1002/(sici)1097-0045(19970215)30:3<160::aid-pros3>3.0.co;2-q
CAS
PubMed
Google Scholar
Pera E, Kaemmerer E, Milevskiy M J G, Yapa K T D S, O’Donnell J S, Brown M A, Simpson F, Peters A A, Roberts-Thomson S J, Monteith G R (2016) The voltage gated Ca(2+)-channel Cav3.2 and therapeutic responses in breast cancer. Cancer Cell Int. 16: 24. https://doi.org/10.1186/s12935-016-0299-0
Kappel S, Marques IJ, Zoni E, Stokłosa P, Peinelt C, Mercader N, Kruithof-de Julio M, Borgström A (2017) Store-operated Ca2+ entry as a prostate cancer biomarker—a riddle with perspectives. Curr Mol Biol Rep 3(4):208–217 https://doi.org/10.1007/s40610-017-0072-8
PubMed
PubMed Central
Google Scholar
Gatlin D M (2013) Improvement of a calcium binding photoswitch through model studies. Retrieved from https://www.researchgate.net/publication/319454150_Improvement_of_a_Calcium_Binding_Photoswitch_Through_Model_Studies
Mayer G, Heckel A (2006) Biologically active molecules with a “light switch.”. Angew Chem Int Ed Eng 45(30):4900–4921 https://doi.org/10.1002/anie.200600387
CAS
Google Scholar
Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL (2013) Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev 113(8):6114–6178 https://doi.org/10.1021/cr300179f
PubMed
Google Scholar
Bansal A, Zhang Y (2014) Photocontrolled nanoparticle delivery systems for biomedical applications. Acc Chem Res 47(10): 3052–3060. https://doi.org/10.1021/ar500217w
Hüll K, Morstein J, Trauner D (2018) In Vivo Photopharmacology. Chem Rev 118(21):10710–10747 https://doi.org/10.1021/acs.chemrev.8b00037
PubMed
Google Scholar
Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4(7):530–538 https://doi.org/10.1038/nrm1154
CAS
PubMed
Google Scholar
Hofer AM, Lefkimmiatis K (2007) Extracellular calcium and cAMP: second messengers as “third messengers”? Physiol Bethesda Md 22:320–327 https://doi.org/10.1152/physiol.00019.2007
CAS
Google Scholar
Sharma V, Nair SV, Jaitley P, Nakade UP, Sharma A, Choudhury S, Garg SK (2018) ATP-sensitive and maxi potassium channels regulate BRL 37344-induced tocolysis in buffaloes-an in vitro study. Theriogenology 107:194–202 https://doi.org/10.1016/j.theriogenology.2017.10.044
CAS
PubMed
Google Scholar
Nair SV, Sharma V, Sharma A, Nakade UP, Jaitley P, Mathesh K, Choudhury S, Garg SK (2017) The functional and molecular studies on involvement of hydrogen sulphide in myometrial activity of non-pregnant buffaloes (Bubalus bubalis). BMC Vet Res 13(1):379 https://doi.org/10.1186/s12917-017-1288-9
PubMed
PubMed Central
Google Scholar
Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058 https://doi.org/10.1016/j.cell.2007.11.028
CAS
PubMed
Google Scholar
Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21 https://doi.org/10.1038/35036035
CAS
PubMed
Google Scholar
Mattson MP (1994) Calcium and neuronal injury in Alzheimer’s disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise. Ann N Y Acad Sci 747:50–76
CAS
PubMed
Google Scholar
Zong W-X, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20(1):1–15 https://doi.org/10.1101/gad.1376506
CAS
PubMed
Google Scholar
Holt E, Christensen G (1997) Transient Ca2+ overload alters Ca2+ handling in rat cardiomyocytes: effects on shortening and relaxation. Am J Phys 273(2 Pt 2):H573–H582 https://doi.org/10.1152/ajpheart.1997.273.2.H573
CAS
Google Scholar
Ma G, Wen S, He L, Huang Y, Wang Y, Zhou Y (2017) Optogenetic toolkit for precise control of calcium signaling. Cell Calcium 64:36–46 https://doi.org/10.1016/j.ceca.2017.01.004
CAS
PubMed
PubMed Central
Google Scholar
Sarma P, Medhi B (2017) Photopharmacology. Indian J Pharm 49(3):221–222 https://doi.org/10.4103/0253-7613.215730
CAS
Google Scholar
Boch R, Canaan AJ, Cho A, Dolphin DD, Hong L, Jain AK, North JR, Richter AM, Smits C, Sternberg ED (2006) Cellular and antitumor activity of a new diethylene glycol benzoporphyrin derivative (lemuteporfin). Photochem Photobiol 82(1):219–224 https://doi.org/10.1562/2005-06-03-RA-564
CAS
PubMed
Google Scholar
Quinn N J (2005) Lemuteporfin injectable for benign prostatic hyperplasia marketing plan for QLT Inc.
Perez-Marrero R, Goldenberg S, Shore N, Benaim E, Fay R, Manyak M, Elhilali M (2005) Transurethral photodynamic therapy (PDT) with lemuteporfin in men with lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH): initial clinical experience. Urology 66(3):20
Google Scholar
Fried NM (2007) New laser treatment approaches for benign prostatic hyperplasia. Curr Urol Rep 8(1):47–52 https://doi.org/10.1007/s11934-007-0020-x
PubMed
Google Scholar
Gharaee-Kermani M, Macoska JA (2013) Promising molecular targets and biomarkers for male BPH and LUTS. Curr Urol Rep 14(6):628–637 https://doi.org/10.1007/s11934-013-0368-z
PubMed
Google Scholar
Rittmaster RS (2008) 5α-reductase inhibitors in benign prostatic hyperplasia and prostate cancer risk reduction. Best Pract Res Clin Endocrinol Metab 22(2):389–402
CAS
PubMed
Google Scholar
Weisser H, Tunn S, Debus M, Krieg M (1994) 5 alpha-reductase inhibition by finasteride (Proscar) in epithelium and stroma of human benign prostatic hyperplasia. Steroids 59(11):616–620 https://doi.org/10.1016/0039-128x(94)90016-7
CAS
PubMed
Google Scholar
Lyng FM, Jones GR, Rommerts FF (2000) Rapid androgen actions on calcium signaling in rat sertoli cells and two human prostatic cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations. Biol Reprod 63(3):736–747 https://doi.org/10.1095/biolreprod63.3.736
CAS
PubMed
Google Scholar
Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ (2002) Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 62(4):1008–1013
CAS
PubMed
Google Scholar
Hall M, Todd B, Allen ED Jr, Nguyen N, Kwon Y-J, Nguyen V, Hearne JL, Martin-Caraballo M (2018) Androgen receptor signaling regulates T-type Ca2+ channel expression and neuroendocrine differentiation in prostate cancer cells. Am. J. Cancer Res 8(4):732
CAS
Google Scholar
Cifuentes E, Mataraza JM, Yoshida BA, Menon M, Sacks DB, Barrack ER, Reddy GP-V (2004) Physical and functional interaction of androgen receptor with calmodulin in prostate cancer cells. Proc Natl Acad Sci U S A 101(2):464–469 https://doi.org/10.1073/pnas.0307161101
CAS
PubMed
Google Scholar
Xu W, Ashford F B, Hodson D, Mauvais-Jarvis F (2018) Molecular Mechanism of Androgen Receptor Stimulation of Insulin Secretion in Male ß Cells.
Jones BJ, Scopelliti R, Tomas A, Bloom SR, Hodson DJ, Broichhagen J (2017) Potent Prearranged Positive Allosteric Modulators of the Glucagon-like Peptide-1 Receptor. ChemistryOpen 6(4):501–505 https://doi.org/10.1002/open.201700062
CAS
PubMed
PubMed Central
Google Scholar
Berridge MJ (2016) Vitamin D, reactive oxygen species and calcium signalling in ageing and disease. Philos Trans R Soc Lond Ser B Biol Sci 371(1700) https://doi.org/10.1098/rstb.2015.0434
Manchanda PK, Kibler AJ, Zhang M, Ravi J, Bid HK (2012) Vitamin D receptor as a therapeutic target for benign prostatic hyperplasia. Indian J Urol IJU J Urol Soc India 28(4):377–381 https://doi.org/10.4103/0970-1591.105745
Google Scholar
Samuel S, Sitrin MD (2008) Vitamin D’s role in cell proliferation and differentiation. Nutr Rev 66(10 Suppl 2):S116–S124 https://doi.org/10.1111/j.1753-4887.2008.00094.x
PubMed
Google Scholar
Espinosa G, Esposito R, Kazzazi A, Djavan B (2013) Vitamin D and benign prostatic hyperplasia -- a review. Can J Urol 20(4):6820–6825
PubMed
Google Scholar
Murphy AB, Nyame YA, Batai K, Kalu R, Khan A, Gogana P et al (2017) Does prostate volume correlate with vitamin D deficiency among men undergoing prostate biopsy? Prostate Cancer Prostatic Dis 20(1):55–60 https://doi.org/10.1038/pcan.2016.41
CAS
PubMed
Google Scholar
Krishnan AV, Peehl DM, Feldman D (2003) Inhibition of prostate cancer growth by vitamin D: Regulation of target gene expression. J Cell Biochem 88(2):363–371 https://doi.org/10.1002/jcb.10334
CAS
PubMed
Google Scholar
Manolagas SC, Provvedini DM, Tsoukas CD (1985) Interactions of 1,25-dihydroxyvitamin D3 and the immune system. Mol Cell Endocrinol 43(2–3):113–122 https://doi.org/10.1016/0303-7207(85)90074-7
CAS
PubMed
Google Scholar
Skryma R, Mariot P, Bourhis XL, Coppenolle FV, Shuba Y, Vanden Abeele F, Legrand G, Humez S, Boilly B, Prevarskaya N (2000) Store depletion and store-operated Ca2+ current in human prostate cancer LNCaP cells: involvement in apoptosis. J Physiol 527(Pt 1):71–83 https://doi.org/10.1111/j.1469-7793.2000.00071.x
CAS
PubMed
PubMed Central
Google Scholar
Burnstein KL (2005) Regulation of androgen receptor levels: implications for prostate cancer progression and therapy. J Cell Biochem 95(4):657–669 https://doi.org/10.1002/jcb.20460
CAS
PubMed
Google Scholar
Lehen’kyi V, Raphaël M, Oulidi A, Flourakis M, Khalimonchyk S, Kondratskyi A, Gordienko DV, Mauroy B, Bonnal J-L, Skryma R, Prevarskaya N (2011) TRPV6 determines the effect of vitamin D3 on prostate cancer cell growth. PLoS One 6(2):e16856 https://doi.org/10.1371/journal.pone.0016856
PubMed
PubMed Central
Google Scholar
Wang T-T, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai Y et al (2005) Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol Baltim Md 19(11):2685–2695 https://doi.org/10.1210/me.2005-0106
CAS
Google Scholar
Schindl R, Kahr H, Graz I, Groschner K, Romanin C (2002) Store Depletion-activated CaT1 Currents in Rat Basophilic Leukemia Mast Cells Are Inhibited by 2-Aminoethoxydiphenyl Borate EVIDENCE FOR A REGULATORY COMPONENT THAT CONTROLS ACTIVATION OF BOTH CaT1 AND CRAC (Ca2+ RELEASE-ACTIVATED Ca2+ CHANNEL) CHANNELS. J Biol Chem 277(30):26950–26958
CAS
PubMed
Google Scholar
Bödding M, Flockerzi V (2004) Ca2+ dependence of the Ca2+-selective TRPV6 channel. J Biol Chem 279(35):36546–36552 https://doi.org/10.1074/jbc.M404679200
PubMed
Google Scholar
Abeele FV, Lemonnier L, Thébault S, Lepage G, Parys JB, Shuba Y, Skryma R, Prevarskaya N (2004) Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J Biol Chem 279(29):30326–30337
Google Scholar
Lehen’kyi V, Flourakis M, Skryma R, Prevarskaya N (2007) TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 26(52):7380–7385 https://doi.org/10.1038/sj.onc.1210545
PubMed
Google Scholar
Thebault S, Roudbaraki M, Sydorenko V, Shuba Y, Lemonnier L, Slomianny C, Dewailly E, Bonnal J-L, Mauroy B, Skryma R, Prevarskaya N (2003) Alpha1-adrenergic receptors activate Ca(2+)-permeable cationic channels in prostate cancer epithelial cells. J Clin Invest 111(11):1691–1701 https://doi.org/10.1172/JCI16293
CAS
PubMed
PubMed Central
Google Scholar
Debruyne FM (2000) Alpha blockers: are all created equal? Urology 56(5 Suppl 1):20–22 https://doi.org/10.1016/s0090-4295(00)00744-5
CAS
PubMed
Google Scholar
Caine M, Raz S (1975) Some clinical implications of adrenergic receptors in the urinary tract. Arch Surg Chic Ill 1960 110(3):247–250 https://doi.org/10.1001/archsurg.1975.01360090017003
CAS
Google Scholar
Schwinn DA, Price DT, Narayan P (2004) alpha1-Adrenoceptor subtype selectivity and lower urinary tract symptoms. Mayo Clin Proc 79(11):1423–1434 https://doi.org/10.4065/79.11.1423
CAS
PubMed
Google Scholar
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL (2016) Emerging Targets in Photopharmacology. Angew Chem Int Ed Eng 55(37):10978–10999 https://doi.org/10.1002/anie.201601931
CAS
Google Scholar
Gazerani P (2017) Shedding light on photo-switchable analgesics for pain. Pain Manag 7(2):71–74 https://doi.org/10.2217/pmt-2016-0039
PubMed
Google Scholar
Vanden Abeele F, Skryma R, Shuba Y, Van Coppenolle F, Slomianny C, Roudbaraki M, Mauroy B, Wuytack F, Prevarskaya N (2002) Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 1(2):169–179 https://doi.org/10.1016/s1535-6108(02)00034-x
Google Scholar
Ventura S, Oliver V, White CW, Xie JH, Haynes JM, Exintaris B (2011) Novel drug targets for the pharmacotherapy of benign prostatic hyperplasia (BPH). Br J Pharmacol 163(5):891–907 https://doi.org/10.1111/j.1476-5381.2011.01332.x
CAS
PubMed
PubMed Central
Google Scholar
Berkowitz DE, Nardone NA, Smiley RM, Price DT, Kreutter DK, Fremeau RT, Schwinn DA (1995) Distribution of beta 3-adrenoceptor mRNA in human tissues. Eur J Pharmacol 289(2):223–228 https://doi.org/10.1016/0922-4106(95)90098-5
CAS
PubMed
Google Scholar
Haynes JM, Hill SJ (1997) Beta-adrenoceptor-mediated inhibition of alpha 1-adrenoceptor-mediated and field stimulation-induced contractile responses in the prostate of the guinea pig. Br J Pharmacol 122(6):1067–1074 https://doi.org/10.1038/sj.bjp.0701494
CAS
PubMed
PubMed Central
Google Scholar
Meigs JB, Mohr B, Barry MJ, Collins MM, McKinlay JB (2001) Risk factors for clinical benign prostatic hyperplasia in a community-based population of healthy aging men. J Clin Epidemiol 54(9):935–944 https://doi.org/10.1016/s0895-4356(01)00351-1
CAS
PubMed
Google Scholar
Tanaka Y, Horinouchi T, Koike K (2005) New insights into beta-adrenoceptors in smooth muscle: distribution of receptor subtypes and molecular mechanisms triggering muscle relaxation. Clin Exp Pharmacol Physiol 32(7):503–514 https://doi.org/10.1111/j.1440-1681.2005.04222.x
CAS
PubMed
Google Scholar
Andersson K-E, Wein AJ (2004) Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 56(4):581–631
CAS
PubMed
Google Scholar
Begley LA, Kasina S, Mehra R, Adsule S, Admon AJ, Lonigro RJ, Chinnaiyan AM, Macoska JA (2008) CXCL5 promotes prostate cancer progression. Neoplasia N Y N 10(3):244–254 https://doi.org/10.1593/neo.07976
CAS
Google Scholar
Singh S, Singh UP, Grizzle WE, Lillard JW (2004) CXCL12–CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Investig 84(12):1666–1676
CAS
PubMed
Google Scholar
Mochizuki H, Matsubara A, Teishima J, Mutaguchi K, Yasumoto H, Dahiya R, Usui T, Kamiya K (2004) Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis. Biochem Biophys Res Commun 320(3):656–663 https://doi.org/10.1016/j.bbrc.2004.06.013
CAS
PubMed
Google Scholar
Zhou S-L, Dai Z, Zhou Z-J, Wang X-Y, Yang G-H, Wang Z, Huang X-W, Fan J, Zhou J (2012) Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatol Baltim Md 56(6):2242–2254 https://doi.org/10.1002/hep.25907
CAS
Google Scholar
Speetjens FM, Kuppen PJK, Sandel MH, Menon AG, Burg D, van de Velde CJH, Tollenaar RAEM, de Bont HJGM, Nagelkerke JF (2008) Disrupted expression of CXCL5 in colorectal cancer is associated with rapid tumor formation in rats and poor prognosis in patients. Clin Cancer Res Off J Am Assoc Cancer Res 14(8):2276–2284 https://doi.org/10.1158/1078-0432.CCR-07-4045
CAS
Google Scholar
Layhadi JA, Turner J, Crossman D, Fountain SJ (2018) ATP Evokes Ca2+ Responses and CXCL5 Secretion via P2X4 Receptor Activation in Human Monocyte-Derived Macrophages. J Immunol Baltim Md 1950 200(3):1159–1168 https://doi.org/10.4049/jimmunol.1700965
CAS
Google Scholar
Bajetto A, Bonavia R, Barbero S, Schettini G (2002) Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 82(6):1311–1329 https://doi.org/10.1046/j.1471-4159.2002.01091.x
CAS
PubMed
Google Scholar
Hegg CC, Hu S, Peterson PK, Thayer SA (2000) Beta-chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia. Neuroscience 98(1):191–199 https://doi.org/10.1016/s0306-4522(00)00101-9
CAS
PubMed
Google Scholar
Liu QH, Williams DA, McManus C, Baribaud F, Doms RW, Schols D, De Clercq E, Kotlikoff MI, Collman RG, Freedman BD (2000) HIV-1 gp120 and chemokines activate ion channels in primary macrophages through CCR5 and CXCR4 stimulation. Proc Natl Acad Sci U S A 97(9):4832–4837 https://doi.org/10.1073/pnas.090521697
CAS
PubMed
PubMed Central
Google Scholar
Szymanski W, Ourailidou ME, Velema WA, Dekker FJ, Feringa BL (2015) Light-controlled histone deacetylase (HDAC) inhibitors: towards photopharmacological chemotherapy. Chem Eur J 21(46):16517–16524
CAS
PubMed
Google Scholar
Patra SK, Patra A, Dahiya R (2001) Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochem Biophys Res Commun 287(3):705–713 https://doi.org/10.1006/bbrc.2001.5639
CAS
PubMed
Google Scholar
Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E (2006) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27(4):811–819 https://doi.org/10.1093/carcin/bgi265
CAS
PubMed
Google Scholar
Varga K, Hollósi A, Pászty K, Hegedűs L, Szakács G, Tímár J, Papp B, Enyedi Á, Padányi R (2018) Expression of calcium pumps is differentially regulated by histone deacetylase inhibitors and estrogen receptor alpha in breast cancer cells. BMC Cancer 18(1):1029 https://doi.org/10.1186/s12885-018-4945-x
CAS
PubMed
PubMed Central
Google Scholar
Jensen H, Andresen L, Pedersen M T, Hansen K A, Skov S (2008) Molecular regulation of MICA expression after HDAC-inhibitor treatment of Jurkat T cells. Presented at the Frontiers in Immunology Research 2008 International Conference.
Korbelik M (2006) PDT-associated host response and its role in the therapy outcome. Lasers Surg Med 38(5):500–508 https://doi.org/10.1002/lsm.20337
PubMed
Google Scholar
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281 https://doi.org/10.3322/caac.20114
PubMed
PubMed Central
Google Scholar
Nesti LJ, Caterson EJ, Wang M, Chang R, Chapovsky F, Hoek JB, Tuan RS (2002) TGF-beta1 calcium signaling increases alpha5 integrin expression in osteoblasts. J Orthop Res Off Publ Orthop Res Soc 20(5):1042–1049 https://doi.org/10.1016/S0736-0266(02)00020-7
CAS
Google Scholar
Reis STD, Pontes-Júnior J, Antunes AA, de Sousa-Canavez JM, Abe DK, da Cruz JAS et al (2011) Tgf-β1 expression as a biomarker of poor prognosis in prostate cancer. Clin Sao Paulo Braz 66(7):1143–1147 https://doi.org/10.1590/s1807-59322011000700004
Google Scholar
Sutkowski DM, Fong CJ, Sensibar JA, Rademaker AW, Sherwood ER, Kozlowski JM, Lee C (1992) Interaction of epidermal growth factor and transforming growth factor beta in human prostatic epithelial cells in culture. Prostate 21(2):133–143 https://doi.org/10.1002/pros.2990210206
CAS
PubMed
Google Scholar
Wilding G (1991) Response of prostate cancer cells to peptide growth factors: transforming growth factor-beta. Cancer Surv 11:147–163
CAS
PubMed
Google Scholar
Gizatullina ZZ, Grapengiesser E, Shabalina IG, Nedergaard J, Heldin C-H, Aspenström P (2003) Effect of transforming growth factor-beta on calcium homeostasis in prostate carcinoma cells. Biochem Biophys Res Commun 304(4):643–649 https://doi.org/10.1016/s0006-291x(03)00654-5
CAS
PubMed
Google Scholar
Schmidt D, Rodat T, Heintze L, Weber J, Horbert R, Girreser U, Raeker T, Bußmann L, Kriegs M, Hartke B, Peifer C (2018) Axitinib: A Photoswitchable Approved Tyrosine Kinase Inhibitor. ChemMedChem 13(22):2415–2426 https://doi.org/10.1002/cmdc.201800531
CAS
PubMed
Google Scholar
Jafari S, Etminan M, Afshar K (2009) Nonsteroidal anti-inflammatory drugs and prostate cancer: a systematic review of the literature and metaanalysis. Can Urol Assoc J 3(4):323
PubMed
PubMed Central
Google Scholar
Nie D, Guo Y, Yang D, Tang Y, Chen Y, Wang M-T, Zacharek A, Qiao Y, Che M, Honn KV (2008) Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase Rho. Cancer Res 68(1):115–121 https://doi.org/10.1158/0008-5472.CAN-07-1018
CAS
PubMed
Google Scholar
Dassesse T, de Leval X, de Leval L, Pirotte B, Castronovo V, Waltregny D (2006) Activation of the thromboxane A2 pathway in human prostate cancer correlates with tumor Gleason score and pathologic stage. Eur Urol 50(5):1021–1031 discussion 1031. https://doi.org/10.1016/j.eururo.2006.01.036
CAS
PubMed
Google Scholar
Ficarra V, Rossanese M, Zazzara M, Giannarini G, Abbinante M, Bartoletti R, Mirone V, Scaglione F (2014) The role of inflammation in lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) and its potential impact on medical therapy. Curr Urol Rep 15(12):463 https://doi.org/10.1007/s11934-014-0463-9
PubMed
Google Scholar
Brace LD, Venton DL, Le Breton GC (1985) Thromboxane A2/prostaglandin H2 mobilizes calcium in human blood platelets. Am J Phys 249(1 Pt 2):H1–H7 https://doi.org/10.1152/ajpheart.1985.249.1.H1
CAS
Google Scholar
Brüne B, Ullrich V (1991) Different calcium pools in human platelets and their role in thromboxane A2 formation. J Biol Chem 266(29):19232–19237
PubMed
Google Scholar
Kiefmann M, Bornchen C, Schuster A, Mecklenburg A, Gniech F, Hammerschmidt S, Kiefmann R (2017) S. pneumoniae Induces Endothelial Calcium-Signaling Through Thromboxane A2 Receptor. In B78 ROLE Endothel. CELLS ACUTE LUNG Inj. (pp. A4374–A4374). American Thoracic Society.
FitzGerald GA (1991) Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am J Cardiol 68(7):11B–15B https://doi.org/10.1016/0002-9149(91)90379-y
CAS
PubMed
Google Scholar
Beyenburg S, Watzka M, Clusmann H, Blümcke I, Bidlingmaier F, Elger CE, Stoffel-Wagner B (2000) Androgen receptor mRNA expression in the human hippocampus. Neurosci Lett 294(1):25–28 https://doi.org/10.1016/s0304-3940(00)01542-1
CAS
PubMed
Google Scholar
Abdul M, Hoosein N (2005) N-methyl-d-aspartate receptor in human prostate cancer. J Membr Biol 205(3):125–128 https://doi.org/10.1007/s00232-005-0777-0
CAS
PubMed
Google Scholar
Stern JE, Potapenko ES (2013) Enhanced NMDA receptor-mediated intracellular calcium signaling in magnocellular neurosecretory neurons in heart failure rats. Am J Physiol-Regul Integr Comp Physiol 305(4):R414–R422
CAS
PubMed
PubMed Central
Google Scholar
Laprell L, Repak E, Franckevicius V, Hartrampf F, Terhag J, Hollmann M, Sumser M, Rebola N, DiGregorio DA, Trauner D (2015) Optical control of NMDA receptors with a diffusible photoswitch. Nat Commun 6:8076 https://doi.org/10.1038/ncomms9076
CAS
PubMed
Google Scholar
Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400 https://doi.org/10.1038/nrn3504
CAS
PubMed
Google Scholar
Zeng X, Sikka SC, Huang L, Sun C, Xu C, Jia D, Abdel-Mageed AB, Pottle JE, Taylor JT, Li M (2010) Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis 13(2):195–201 https://doi.org/10.1038/pcan.2009.55
CAS
PubMed
Google Scholar
Zhao L-Y, Xu W-L, Xu Z-Q, Qi C, Li Y, Cheng J, Liu L-K, Wu Y-N, Gao J, Ye J-H (2016) The overexpressed functional transient receptor potential channel TRPM2 in oral squamous cell carcinoma. Sci Rep 6:38471 https://doi.org/10.1038/srep38471
CAS
PubMed
PubMed Central
Google Scholar
Borse SP, Singh DP, Upadhyay D, Sharma V, Nivsarkar MA (2018) Probiotic use in the management of hypertension: A new era of therapeutic management. Indian J Health Sci Biomed Res KLEU 11(3):207
Google Scholar
Stein M, Breit A, Fehrentz T, Gudermann T, Trauner D (2013) Optical control of TRPV1 channels. Angew Chem Int Ed Eng 52(37):9845–9848 https://doi.org/10.1002/anie.201302530
CAS
Google Scholar
Miyake H, Chi KN, Gleave ME (2000) Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 6(5):1655–1663
CAS
Google Scholar
Buttyan R, Olsson CA, Pintar J, Chang C, Bandyk M, Ng PY, Sawczuk IS (1989) Induction of the TRPM-2 gene in cells undergoing programmed death. Mol Cell Biol 9(8):3473–3481 https://doi.org/10.1128/mcb.9.8.3473
CAS
PubMed
PubMed Central
Google Scholar
Connor J, Sawczuk IS, Benson MC, Tomashefsky P, O’Toole KM, Olsson CA, Buttyan R (1988) Calcium channel antagonists delay regression of androgen-dependent tissues and suppress gene activity associated with cell death. Prostate 13(2):119–130 https://doi.org/10.1002/pros.2990130204
CAS
PubMed
Google Scholar
Liu B, Han MTZ, Zhang J, Lu P, Li J, Song N, Wang Z, Yin C, Zhang W (2013) Downregulation of clusterin expression in human testicular seminoma. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 32(4):1117–1123 https://doi.org/10.1159/000354511
CAS
Google Scholar
Bursch W, Gleeson T, Kleine L, Tenniswood M (1995) Expression of clusterin (testosterone-repressed prostate message-2) mRNA during growth and regeneration of rat liver. Arch Toxicol 69(4):253–258 https://doi.org/10.1007/s002040050167
CAS
PubMed
Google Scholar
Kalka K, Ahmad N, Criswell T, Boothman D, Mukhtar H (2000) Up-regulation of clusterin during phthalocyanine 4 photodynamic therapy-mediated apoptosis of tumor cells and ablation of mouse skin tumors. Cancer Res 60(21):5984–5987
CAS
PubMed
Google Scholar
Nowis D, Makowski M, Stokłosa T, Legat M, Issat T, Gołab J (2005) Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim Pol 52(2):339–352
CAS
PubMed
Google Scholar
Miyake H, Nelson C, Rennie PS, Gleave ME (2000) Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res 60(1):170–176
CAS
PubMed
Google Scholar
Marin MC, Fernandez A, Bick RJ, Brisbay S, Buja LM, Snuggs M, McConkey DJ, von Eschenbach AC, Keating MJ, McDonnell TJ (1996) Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca2+. Oncogene 12(11):2259–2266
CAS
PubMed
Google Scholar
Barolet D (2018) Photobiomodulation in dermatology: harnessing light from visible to near infrared. Med Res Arch 6(1)
Di Corato R, Béalle G, Kolosnjaj-Tabi J, Espinosa A, Clément O, Silva AKA, Ménager C, Wilhelm C (2015) Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 9(3):2904–2916 https://doi.org/10.1021/nn506949t
PubMed
Google Scholar
Collot M, Loukou C, Yakovlev AV, Wilms CD, Li D, Evrard A et al (2012) Calcium rubies: a family of red-emitting functionalizable indicators suitable for two-photon Ca2+ imaging. J Am Chem Soc 134(36):14923–14931 https://doi.org/10.1021/ja304018d
CAS
PubMed
Google Scholar
Mourot A, Fehrentz T, Kienzler M, Tochitsky I, Banghart MR, Trauner D, Kramer RH (2010) Photopharmacology: controlling native voltage-gated ion channels with light. Biophys J 98(3):212a
Google Scholar
Jiang HN, Li Y, Cui ZJ (2017) Photodynamic physiology—photonanomanipulations in cellular physiology with protein photosensitizers. Front Physiol 8:191 https://doi.org/10.3389/fphys.2017.00191
CAS
PubMed
PubMed Central
Google Scholar
Rennhack A, Grahn E, Kaupp UB, Berger TK (2017) Photocontrol of the Hv1 proton channel. ACS Chem Biol 12(12):2952–2957 https://doi.org/10.1021/acschembio.7b00523
CAS
PubMed
Google Scholar
Kienzler MA, Reiner A, Trautman E, Yoo S, Trauner D, Isacoff EY (2013) A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J Am Chem Soc 135(47):17683–17686 https://doi.org/10.1021/ja408104w
CAS
PubMed
PubMed Central
Google Scholar
Dong M, Babalhavaeji A, Samanta S, Beharry AA, Woolley GA (2015) Red-shifting azobenzene photoswitches for in vivo use. Acc Chem Res 48(10):2662–2670 https://doi.org/10.1021/acs.accounts.5b00270
CAS
PubMed
Google Scholar
Lin W-C, Kramer RH (2018) Light-switchable ion channels and receptors for optogenetic interrogation of neuronal signaling. Bioconjug Chem 29(4):861–869 https://doi.org/10.1021/acs.bioconjchem.7b00803
CAS
PubMed
PubMed Central
Google Scholar
Kramer RH, Mourot A, Adesnik H (2013) Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16(7):816–823 https://doi.org/10.1038/nn.3424
PubMed
PubMed Central
Google Scholar
Broichhagen J, Frank JA, Trauner D (2015) A roadmap to success in photopharmacology. Acc Chem Res 48(7):1947–1960 https://doi.org/10.1021/acs.accounts.5b00129
CAS
PubMed
Google Scholar
Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143 https://doi.org/10.1016/j.coph.2014.12.008
CAS
PubMed
Google Scholar
Bregestovski P, Maleeva G, Gorostiza P (2018) Light-induced regulation of ligand-gated channel activity. Br J Pharmacol 175(11):1892–1902 https://doi.org/10.1111/bph.14022
CAS
PubMed
Google Scholar
Smeland E, Bremnes RM, Fuskevag OM, Aarbakke J (1995) The effect of calcium channel blockers and calcium on methotrexate accumulation in rat hepatocytes. Anticancer Res 15(4):1221–1225
CAS
PubMed
Google Scholar
Mason RP (1999) Calcium channel blockers, apoptosis and cancer: is there a biologic relationship? J Am Coll Cardiol 34(7):1857–1866 https://doi.org/10.1016/s0735-1097(99)00447-7
CAS
PubMed
Google Scholar
Kondo S, Yin D, Morimura T, Takeuchi J (1995) Combination therapy with cisplatin and nifedipine inducing apoptosis in multidrug-resistant human glioblastoma cells. J Neurosurg 82(3):469–474 https://doi.org/10.3171/jns.1995.82.3.0469
CAS
PubMed
Google Scholar
Leszczynski D, Zhao Y, Luokkamäki M, Foegh ML (1994) Apoptosis of vascular smooth muscle cells. Protein kinase C and oncoprotein Bcl-2 are involved in regulation of apoptosis in non-transformed rat vascular smooth muscle cells. Am J Pathol 145(6):1265–1270
CAS
PubMed
PubMed Central
Google Scholar
Balakumaran A, Campbell GA, Moslen MT (1996) Calcium channel blockers induce thymic apoptosis in vivo in rats. Toxicol Appl Pharmacol 139(1):122–127 https://doi.org/10.1006/taap.1996.0150
CAS
PubMed
Google Scholar
Mazo V (1994) Transrectal low level laser therapy in the management of prostatic problems. Laser Ther 6(4):203–207
Google Scholar
Zharov V P, Latyshev A S, Leviev D O (1999) Photomedicine with laser drug delivery technologies. (Vol. 3829, pp. 141–154). Presented at the ALT’98 Selected Papers on Novel Laser Methods in Medicine and Biology, International Society for Optics and Photonics.
Ishii T, Sato K, Kakumoto T, Miura S, Touhara K, Takeuchi S, Nakata T (2015) Light generation of intracellular Ca(2+) signals by a genetically encoded protein BACCS. Nat Commun 6:8021 https://doi.org/10.1038/ncomms9021
CAS
PubMed
Google Scholar
Sato M, Asano T, Hosomichi J, Ono T, Nakata T (2018) Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells. Biochem Biophys Res Commun 506(3):716–722
CAS
PubMed
Google Scholar
Broichhagen J, Frank JA, Johnston NR, Mitchell RK, Šmid K, Marchetti P, Bugliani M, Rutter GA, Trauner D, Hodson DJ (2015) A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chem Commun (Camb) 51(27):6018–6021 https://doi.org/10.1039/c5cc01224d
CAS
Google Scholar
Mourot A, Herold C, Kienzler MA, Kramer RH (2018) Understanding and improving photo-control of ion channels in nociceptors with azobenzene photo-switches. Br J Pharmacol 175(12):2296–2311 https://doi.org/10.1111/bph.13923
CAS
PubMed
Google Scholar
Vapaavuori J, Goulet-Hanssens A, Heikkinen IT, Barrett CJ, Priimagi A (2014) Are two azo groups better than one? Investigating the photoresponse of polymer-bisazobenzene complexes. Chem Mater 26(17):5089–5096
CAS
Google Scholar
Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105(43):16767–16772 https://doi.org/10.1073/pnas.0808567105
CAS
PubMed
PubMed Central
Google Scholar
Frank JA, Moroni M, Moshourab R, Sumser M, Lewin GR, Trauner D (2015) Photoswitchable fatty acids enable optical control of TRPV1. Nat Commun 6:7118 https://doi.org/10.1038/ncomms8118
PubMed
Google Scholar
Qu Z, Yao W, Yao R, Liu X, Yu K, Hartzell C (2014) The Ca(2+)-activated Cl(−) channel, ANO1 (TMEM16A), is a double-edged sword in cell proliferation and tumorigenesis. Cancer Med 3(3):453–461 https://doi.org/10.1002/cam4.232
CAS
PubMed
PubMed Central
Google Scholar
Cristofanilli M, Charnsangavej C, Hortobagyi GN (2002) Angiogenesis modulation in cancer research: novel clinical approaches. Nat Rev Drug Discov 1(6):415–426 https://doi.org/10.1038/nrd819
CAS
PubMed
Google Scholar
Velema WA, Hansen MJ, Lerch MM, Driessen AJM, Szymanski W, Feringa BL (2015) Ciprofloxacin-photoswitch conjugates: a facile strategy for photopharmacology. Bioconjug Chem 26(12):2592–2597 https://doi.org/10.1021/acs.bioconjchem.5b00591
CAS
PubMed
Google Scholar
Broichhagen J, Podewin T, Meyer-Berg H, von Ohlen Y, Johnston NR, Jones BJ, Bloom SR, Rutter GA, Hoffmann-Röder A, Hodson DJ, Trauner D (2015) Optical control of insulin secretion using an incretin switch. Angew Chem Int Ed Eng 54(51):15565–15569 https://doi.org/10.1002/anie.201506384
CAS
Google Scholar
Wegener M, Hansen MJ, Driessen AJM, Szymanski W, Feringa BL (2017) Photocontrol of antibacterial activity: shifting from UV to red light activation. J Am Chem Soc 139(49):17979–17986 https://doi.org/10.1021/jacs.7b09281
CAS
PubMed
PubMed Central
Google Scholar