Lord CC, Wyler SC, Wan R, Castorena CM, Ahmed N, Mathew D, Lee S, Liu C, Elmquist JK (2017) The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C. J Clin Invest 127(9):3402–3406. https://doi.org/10.1172/JCI93362
Article
PubMed
PubMed Central
Google Scholar
Redinger RN (2007) The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol 3(11):856. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104148/pdf/GH-03-856.pdf
Cooper GD, Pickavance LC, Wilding JP, Halford JC, Goudie AJ (2005) A parametric analysis of olanzapine-induced weight gain in female rats. Psychopharmacology (Berl) 181(1):80–89 https://doi.org/10.1007/s00213-005-2224-4
Article
CAS
Google Scholar
Shah R, Subhan F, Ali G, Ullah I, Ullah S, Shahid M, Ahmad N, Fawad K (2016) Olanzapine induced biochemical and histopathological changes after its chronic administration in rats. Saudi Pharm J 24(6):698–704. https://doi.org/10.1016/j.jsps.2015.06.006
Article
PubMed
Google Scholar
Pouzet B, Mow T, Kreilgaard M, Velschow S (2003) Chronic treatment with antipsychotics in rats as a model for antipsychotic-induced weight gain in human. Pharmacol Biochem Behav 75(1):133–140. https://doi.org/10.1016/s0091-3057(03)00042-x
Article
CAS
PubMed
Google Scholar
Choi S, DiSilvio B, Unangst J, Fernstrom JD (2007) Effect of chronic infusion of olanzapine and clozapine on food intake and body weight gain in male and female rats. Life Sci 81(12):1024–1030. https://doi.org/10.1016/j.lfs.2007.08.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Davey KJ, O’Mahony SM, Schellekens H, O’Sullivan O, Bienenstock J, Cotter PD, Dinan TG, Cryan JF (2012) Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl) 221(1):155–169. https://doi.org/10.1007/s00213-011-2555-2
Article
CAS
Google Scholar
Albaugh VL, Henry CR, Bello NT, Hajnal A, Lynch SL, Halle B, Lynch CJ (2006) Hormonal and metabolic effects of olanzapine and clozapine related to body weight in rodents. Obesity (Silver Spring) 14(1):36–51. https://doi.org/10.1038/oby.2006.6
Article
CAS
Google Scholar
Brittijn SA, Duivesteijn SJ, Belmamoune M, Bertens LF, Bitter W, Debruijn JD, Champagne DL, Cuppen E, Flik G, Vandenbroucke-Grauls CM, Janssen RA (2009) Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol 53(5-6):835–850. https://doi.org/10.1387/ijdb.082615sb
Article
CAS
PubMed
Google Scholar
Hölttä-Vuori M, Salo VT, Nyberg L, Brackmann C, Enejder A, Panula P, Ikonen E (2010) Zebrafish: gaining popularity in lipid research. Biochem J 429(2):235–242. https://doi.org/10.1042/BJ20100293
Article
CAS
PubMed
Google Scholar
Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10(1):21 https://doi.org/10.1186/1472-6793-10-21
Article
Google Scholar
Lagunin A, Ivanov S, Rudik A, Filimonov D, Poroikov V (2013) DIGEP-Pred: web service for in silico prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics 29(16):2062–2063. https://doi.org/10.1093/bioinformatics/btt322
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(Database issue):D362–D368. https://doi.org/10.1093/nar/gkw937
Article
CAS
PubMed
Google Scholar
Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35(Database issue)::198-201. https://doi.org/10.1093/nar/gkl999
Ho JC, Hsiao CD, Kawakami K, William KF (2016) Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos. Aquat Toxicol 173:29–35. https://doi.org/10.1016/j.aquatox.2016.01.001
Article
CAS
PubMed
Google Scholar
Makky K, Duvnjak P, Pramanik K, Ramchandran R, Mayer AN (2008) A whole-animal microplate assay for metabolic rate using zebrafish. J Biomol Screen 13(10):960–967. https://doi.org/10.1177/1087057108326080
Article
CAS
PubMed
Google Scholar
Mathews J, Newcomer JW, Mathews JR, Fales CL, Pierce KJ, Akers BK, Marcu I, Barch DM (2012) Neural correlates of weight gain with olanzapine. Arch Gen Psychiatry 69(12):1226–12237. https://doi.org/10.1001/archgenpsychiatry.2012.934
Article
CAS
PubMed
Google Scholar
Parekh S, Anania FA (2007) Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology 132(6):2191–2207. https://doi.org/10.1053/j.gastro.2007.03.055
Article
CAS
PubMed
Google Scholar
Consitt LA, Bell JA, Houmard JA (2009) Intramuscular lipid metabolism, insulin action, and obesity. IUBMB life 61(1):47–55. https://doi.org/10.1002/iub.142
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, Loo LW, Shvetsov YB, Yu H, Chen T, Zhang Y (2015) Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine 2(10):1513–1522. https://doi.org/10.1016/j.ebiom.2015.09.004
Article
PubMed
PubMed Central
Google Scholar
Ebbert JO, Jensen MD (2013) Fat depots, free fatty acids, and dyslipidemia. Nutrients 5(2):498–508. https://doi.org/10.3390/nu5020498
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi MS, Kim YJ, Kwon EY, Ryoo JY, Kim SR, Jung UJ (2015) High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling-and inflammation-related genes. Br J Nutr 113(6):867–877. https://doi.org/10.1017/S0007114515000100
Article
CAS
PubMed
Google Scholar
Wone BW, Donovan ER, Cushman JC, Hayes JP (2013) Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 165(1):70–78. https://doi.org/10.1016/j.cbpa.2013.02.010
Article
CAS
PubMed
PubMed Central
Google Scholar
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN (2017) Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 68:3–33. https://doi.org/10.1016/j.reprotox.2016.10.001
Article
CAS
PubMed
Google Scholar
Weber JM (2011) Metabolic fuels: regulating fluxes to select mix. J Exp Biol 214(Pt 2):286–294. https://doi.org/10.1242/jeb.047050
Article
CAS
PubMed
Google Scholar
Parameswaran K, Todd DC, Soth M (2006) Altered respiratory physiology in obesity. Can Respir J 13(4):203–210. https://doi.org/10.1155/2006/834786
Article
PubMed
PubMed Central
Google Scholar
Melo LC, Silva MA, Calles AC (2014) Obesity and lung function: a systematic review. Einstein (Sao Paulo) 12(1):120–125 https://doi.org/10.1590/S1679-45082014RW2691
Article
Google Scholar
Porhomayon J, Papadakos P, Singh A, Nader ND (2011) Alteration in respiratory physiology in obesity for anesthesia-critical care physician. HSR Proc Intensive Care Cardiovasc Anesth 3(2):109–118 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484623/pdf/hsrp-03-109.pdf
CAS
PubMed
PubMed Central
Google Scholar
Salome CM, King GG, Berend N (2009) Physiology of obesity and effects on lung function. J Appl Physiol 108:206–211. https://doi.org/10.1152/japplphysiol.00694.2009
Article
PubMed
Google Scholar
Khanal P (2019) Patil BM. Gene set enrichment analysis of alpha-glucosidase inhibitors from Ficus benghalensis Asian Pac J Trop Biomed 9:263–270. https://doi.org/10.4103/2221-1691.260399
Article
Google Scholar
Khanal P, Patil BM, Mandar BK, Dey YN, Duyu T (2019) Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia. Clin Phytosci 5:35. https://doi.org/10.1186/s40816-019-0131-1
Article
CAS
Google Scholar