British Pharmacopoeia (2007), British Pharmacopeia Commission, Her Majesty’s Stationery Office, London.
Bailey CJ, Path MRC, Turner RC (1996) Metformin. N Engl J Med 334:574–579
CAS
PubMed
Google Scholar
European Pharmacopoeia, Strasbourg, Council of Europe, 2007;6.0: 2370.
The United States Pharmacopoeia, XXXII Revision, the National Formulary XXVII, Rockville, USP Convention, 2009; 2905.
Al-Rimawi F (2009) Development and validation of an analytical method for metformin hydrochloride and its related compound (1-cyanoguanidine) in tablet formulations by HPLC-UV. Talanta 79:1368–1371
CAS
PubMed
Google Scholar
Kar M, Choudhury P (2009) HPLC Method for estimation of metformin hydrochloride in formulated microspheres and tablet dosage form. Indian J Pharm Sci 71:318–320
PubMed
PubMed Central
Google Scholar
Lad NR, Bhoir SI, Bhoir IC, Sundaresan M (2003) Concurrent assay of Metformin and Glimepiride in tablet using RP-HPLC with wavelength programming. Indian J Pharm Sci 65(6):650–653
CAS
Google Scholar
Gindy AE, Nassar MW, Abasawy NME, Attia KAS, Shabrawi MA (2010) Optimization and validation of an RP-HPLC method for direct determination of metformin hydrochloride in human urine and in a dosage form. J AOAC Intl 93:1821–1828
Google Scholar
Devendra K, Saurabh S, Rachumallu R, Rakesh KD (2014) Development and validation RP-HPLC-PDA method for the determination of metformin in bulk and dosage form. World J Pharm Pharm Sci 3:745–757
Google Scholar
Gomes P, Sippel J, Jablonski A, Steppe M (2004) Determination of rosiglitazone in coated tablets by MEKC and HPLC methods. J Pharm Biomed Anal 36:909–913
CAS
PubMed
Google Scholar
Radhakrishna J, Satyanarayana J, Satyanarayana A (2002) LC Determination of rosiglitazone in bulk and pharmaceutical formulation. J Pharm Biomed Anal 29:873–880
CAS
PubMed
Google Scholar
Vasudevan M, Ravi J, Ravisankar S, Suresh B (2001) Ion-pair liquid chromatography technique for the estimation of metformin in its multicomponent dosage forms. J Pharm Biomed Anal 25:77–84
CAS
PubMed
Google Scholar
Khanolkar DH, Shindhe VM (1999) RP/HPLC method for the estimation of gliben clamide and metformin HCl from combined dosage form. Indian Drugs 36:739–742
CAS
Google Scholar
Arayne MS, Sultana N, Zuberi MH (2006) Development and validation of RP-HPLC method for the analysis of metformin. Pakistan J Pham Sci 19:231–235
CAS
Google Scholar
Anna G, Anna B-R, Tomasz M, Krzysztof W (2019) Determination of chemical stability of two oral antidiabetics, metformin and repaglinide in the solid state and solutions using LC-UV, LC-MS, and FT-IR methods. Molecules 24:4430
Google Scholar
Gayathri S, Shantha A, Vaidyalingam V (2003) Simultaneous HPTLC determination of gliclazide and rosiglitazone in tablets. Indian J Pharm Sci 65:663–665
Google Scholar
Havele SS, Dhaneshwar SR (2011) Simultaneous determination of metformin hydrochloride in its multicomponent dosage forms with sulfonyl ureas like gliclazide and glimepiride using HPTLC. J Liq Chromatogr Rel Tech 34:966–980
CAS
Google Scholar
Sane RT, Francis M, Moghe A, Khedkar S, Anerao A (2002) High-performance thin-layer chromatographic determination of rosiglitazone in its dosage form. J Planar Chromatogr Mod TLC 15:192–195
CAS
Google Scholar
Afnan EA, Hadir MM, Nourah ZA (2020) HPTLC method for the determination of metformin hydrochloride, saxagliptin hydrochloride, and dapagliflozin in pharmaceuticals. Current Anal Chem 16:609–619
Google Scholar
Sane RT, Banavalikar VJ, Bhate VR, Nayak VG (1989) Gas-chromatographic determination of metformin hydrochloride from pharmaceutical preparations. Indian Drugs 26:647–648
CAS
Google Scholar
Handom II, Bani AKJ, Abushoffa AM (2010) Development and validation of a stability indicating capillary electrophoresis method for the determination of Metformin -hydrochloride in tablets. J Pharm Biomed Anal 53:1254–1257
Google Scholar
Ashour S, Kabbani R (2003) Direct spectrophotometric determination of metformin hydrochloride in pure form and in drug formulations. Anal Lett 36:361–370
CAS
Google Scholar
Aruna A, Nancy K (2000) Simultaneous estimation of metformin hydrochloride and glipizide solid dosage forms by ultraviolet spectrophotometry. Indian Drugs 37:533–534
CAS
Google Scholar
El-Bardicy MG, El-Khateeb SZ, Ahmad AKS, Assad HN (1989) Spectrophotometric determination of metformin via charge-transfer complex with iodine. Spectrosc Lett 22:1173–1181
CAS
Google Scholar
Hassan SSM, Mahmoud WH, Elmosallamy MAF, Othman OHM (1999) Determination of metformin in pharmaceutical preparations using potentiometry, spectrofluorimetry and UV–visible spectrophotometry. Anal Chim Acta 378:299–311
CAS
Google Scholar
Saxena PN, Ajay S, Raghuvamshi S, Jain VK, Patel A, Gupta N (2010) UV spectrophotometric method for the quatitation of metformin hyrochloride in pharmaceutical dosage form. Orient J Chem 26:1553–1553
CAS
Google Scholar
Umapathi P, Ayyappan J, Quine SD (2012) Quantitative determination of metformin hydrochloride in tablet formulation containing croscarmellose sodium as disintegrant by HPLC and UV spectrophotometry. Trop J Pharm Res 11:107–116
CAS
Google Scholar
Shrikrishna B, Vinod P, Smrutidevi S, Mahesh R, Deepali K (2012) Validation of uv spectrophotometric method with stress degradation study for metformin hydrochloride. Pharma Tutor:Article ID-1298
Rizk MS, Abdel-Fattah M, Issa YM, Atia EM (1993) A new metformin selective plastic membrane electrode based on metformin tetraphenylborate. Anal Lett 26:415–428
CAS
Google Scholar
Shoukry AF, Rizk MS, Abdel-Fattah HM, Issa YM, Atia EM (1994) Construction and performance characteristics of a metformin electrode based on the metformin phosphotungstate ion-associate. J Chem Technol Biotechnol 60:217–222
CAS
Google Scholar
Rizk MS (1994) Metformin-selective PVC membrane electrode based on metforminium phosphomolybdate ion pair. J Chem Technol Biotechnol 61:67–72
CAS
Google Scholar
Rizk MS (1995) Metformin-selective poly(vinyl chloride) (PVC) membrane electrode based on the metforminium phosphomolybdate ion pair. Electroanalysis 7:687–691
CAS
Google Scholar
Abou-dan M, Ashour S, Abou-dan H (2001) Conductometric titration of metformin in pure form and in pharmaceutical preparations using sodium tetraphenylborate and cetylpyridinium bromide. Asian J Chem 13:1–7
CAS
Google Scholar
Kharbade S, Asnani A, Pratyush K (2019) Development and validation of UV spectrophotometric method for simultaneous estimation of metformin HCl and repaglinide in pharmaceutical formulation. J Drug Deliv Ther 9:344–347
CAS
Google Scholar
Hanan AM, Nesrin KR, Sherine SD, Azza AM (2017) Chromatographic methods for the simultaneous determination of binary mixture of Saxagliptin HCl and metformin HCl. Bull Fac Pharm Cairo Univ 55:311–317
Google Scholar
Ahmed G, Hani A-S, Crispin RD (2019) Development and validation of a new analytical HPLC method for simultaneous determination of the antidiabetic drugs, metformin and gliclazide. J Food Drug Anal 27:315–322
Google Scholar
Nawab S, Nasreen F, Shahnaz P, Farhan AS (2019) Simultaneous determination of anti-diabetic drugs. Braz J Pharm Sci 55:e17394
Google Scholar
Hadir MM, Afnan EA, Nourah ZA, Haya IA (2019) Stability-indicating capillary electrophoresis method for the simultaneous determination of metformin hydrochloride, saxagliptin hydrochloride, and dapagliflozin in pharmaceutical tablets. J Liq Chromatogr Rel Tech 42:161–171
Google Scholar
Mubben G, Noor K (2009) Spectrophotometric method for analysis of metformin hydrochloride. Ind J Pharm Sci 71:100–101
Google Scholar
Vandana PP, Subhash JD, Suvarna HK, Sudarshan TK, Pramod OK (2014) Molybdate assisted ninhydrin based spectrophotometric method for the estimation of metformin hydrochloride in bulk drugs and tablet dosage form. J Indian Chem Soc 91:171–177
Google Scholar
Pignard P (1962) Dosage spectrophotométrique du NN dimethylbiguanide dans le sang et l’urine. Ann Biol Clin 20:325–333
CAS
Google Scholar
Siest G, Ross F, Gabou JJ (1963) Dosage du NN dimethylbiguanide par le diacetyle en milieu alcalin. Bull Soc Pharm 58:29–38
CAS
Google Scholar
Garret ER, Tsau J (1972) Application of ion-pair methods to drug extraction from biological fluids I: quantitative determination of biguanides in urine. J Pharm Sci 16:1404–1410
Google Scholar
Zhong-hua C, Adélia JAA, Andrew CHS, Hans L (2018) Analysis of charge transfer transitions in stacked π-electron donor–acceptor complexes. Phys Chem Chem Phys 20:26957–26967
Google Scholar
Saleh GA (1998) Charge-transfer complexes of barbiturates and phenytoin. Talanta 46:111–121
CAS
PubMed
Google Scholar
Gouda AA (2009) Utility of certain sigma- and pi-acceptors for the spectrophotometric determination of ganciclovir in pharmaceutical formulations. Talanta 80:151–157
CAS
PubMed
Google Scholar
Khaled E (2008) Spectrophotometric determination of terfenadine in pharmaceutical preparations by charge-transfer reactions. Talanta 75:1167–1174
CAS
PubMed
Google Scholar
El-Sherif ZA, Mohamed AO, Walash MI, Tarras FM (2000) Spectrophotometric determination of loperamide hydrochloride by acid-dye and charge-transfer complexation methods in the presence of its degradation products. J Pharm Biomed Anal 22:13–23
CAS
PubMed
Google Scholar
Walash M, Sharaf-El Din M, Metwalli MES, Reda Shabana M (2004) Spectrophotometric determination of nizatidine and ranitidine through charge transfer complex formation. Arch Pharm Res 27:720–726
CAS
PubMed
Google Scholar
Raza A, Ijaz AS, Atta-ur-Rehmana, Rasheed U (2007) Spectrophotometric determination of ondansetron hydrochloride in pharmaceutical bulk and dosage forms. J Chin Chem Soc 54:223–227
CAS
Google Scholar
Douglas AS, Donald MW (1971) Principles of instrumental analysis. Holt, Renehart, Winston, New York, p 104
Google Scholar
International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonized Tripartite Guideline, Validation of analytical procedures: text and methodology Q2(R 1), Complementary Guideline on Methodology dated 06 November 1996, incorporated in November 2005, London.
International Conference on Harmonization (ICH) Harmonized Tripartite Guideline: Validation of analytical procedures: text and methodology Q2(R1), November 2005, London.
Mostafa AA, Bebawy LI, Refaat HH (2002) A spectrophotomtric determination of clobetasol propionate, Halobetasol propionate, quinagolide hydrochloride, through Charge transfer complexation. J Pharm Biomed Anal 27:889–899
CAS
PubMed
Google Scholar
Basavaiah K, Sameer AMA (2010) Use of charge transfer complexation reaction for the spectrophotometric determination of bupropion in pharmaceuticals and spiked human urine. Thai J Pharm Sci 34:134–145
CAS
Google Scholar
Basavaiah K, Raghu MS, Vinay KB (2012) Simple and rapid spectrophotometric assay of levocetirizine in pharmaceuticals through charge-transfer complexation using chloranilic acid and 2,3-dichloro-5,6-dicyanoquinone as π-acceptors. Bull Chem Soc Ethiop 26:319–328
CAS
Google Scholar
Rahman N, Nasrul HM (2003) Validated spectrohotometric methods for the determination of amlodipine besylate in drug formulation using 2,3-dichloro 5,6-dicyano 1,4-benzoquinone and ascorbic acid. J Pharm Biomed Anal 31:381–392
CAS
PubMed
Google Scholar
Prashanth KN, Basavaiah K (2012) Utility of p-chloranilic acid and 2,3-dichloro-5,6-dicyano-p-benzoquinone for the spectrophotometric determination of rizatriptan benzoate. ISRN Anal Chem 2012:1–12
Google Scholar
Vinay KB, Revanasiddappa HD, Raghu MS, Abdulrahman SAM, Rajendraprasad N (2012) Spectrophotometric determination of mycophenolate mofetil as its charge-transfer complexes with two π-acceptors. J Anal Methods Chem 2012:1–8
Google Scholar