Gadade DD, Pekamwar SS, Lahoti SR, Patni SD, Sarode MC (2017) Cocrystallization of etodolac: prediction of cocrystallization, synthesis, solid state characterization and in vitro drug release. Marmara Pharm J 21:78–88
Article
CAS
Google Scholar
Eedara BB, Veerareddy PR, Jukanti R, Bandari S (2014) Improved oral bioavailability of fexofenadine hydrochloride using lipid surfactants: ex vivo, in situ and in vivo studies. Drug Dev Ind Pharm 40:1030–1043
Mullauer FB, Van BL, Daalhuisen JB, Ten BMS, Storm G, Medema JP, Schiffelers RM, Kessler JH (2011) Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs 22:223–233
Article
CAS
Google Scholar
Dehelean CA, Feflea S, Gheorgheosu D, Ganta S, Cimpean AM, Muntean D, Amiji MM (2013) Anti-angiogenic and anti-cancer evaluation of betulin nanoemulsion in chicken chorioallantoic membrane and skin carcinoma in Balb/c mice. J Biomed Nanotechnol 9:577–589
Tan JM, Govindarajan K, Arulselvan P, Fakurazi S, Hussein MZ (2014) Sustained release and cytotoxicity evaluation of carbon nanotube-mediated drug delivery system for betulinic acid. J Nanomater https://doi.org/10.1155/2014/862148
Das J, Samadder A, Das S, Paul A, Khuda BAR (2016) Nanopharmaceutical approach for enhanced anti-cancer activity of betulinic acid in lung-cancer treatment via activation of PARP: interaction with DNA as a target: anti-cancer potential of nano-betulinic acid in lung cancer. J Pharmacopuncture 19:37–44
Hu L, Jia Y, Niu F, Zheng J, Yang X, Jiao K (2012) Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J. Agric. Food Chem. 60:7137–7141
Article
CAS
Google Scholar
Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702
Yadav AV, Shete AS, Dabke AP, Kulakarni PV, Sakhare SS (2009) Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci 71:359–370
Article
CAS
Google Scholar
Shahram E, Mohammadreza SS, Khosro A, Mohammad BJ (2018) Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts 8:305–320
Article
Google Scholar
Yamashita H, Sun CC (2019) Expedited tablet formulation development of a highly soluble carbamazepine cocrystal enabled by precipitation inhibition in diffusion layer. Pharm Res 36:90
Yamashita H, Sun CC (2017) Improving dissolution rate of carbamazepine-glutaric acid cocrystal through solubilization by excess coformer. Pharm Res 35:4
Bhandaru JS, Malothu N, Akkinepally RR (2015) Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate cocrystals. Cryst Growth Des 15:1173–1179
Article
CAS
Google Scholar
Yamashita H, Sun CC (2016) Harvesting potential dissolution advantages of soluble cocrystals by depressing precipitation using the common coformer effect. Cryst Growth Des 16:6719–6721
Wang C, Tong Q, Hou X, Hu S, Fang J, Sun CC (2016) Enhancing bioavailability of dihydromyricetin through inhibiting precipitation of soluble cocrystals by a crystallization inhibitor. Cryst Growth Des 16:5030–5039
McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, Mannion R, Ed O’D, Park A (2006) Use of glutaric acid cocrystals to improve oral bioavailability of a low solubility API. Pharm Res 23:1888–1897
Article
CAS
Google Scholar
Blagden N, Matas DM, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59:617–630
Article
CAS
Google Scholar
Desiraju GR (2013) Crystal engineering: from molecule to crystal. J Am Chem Soc 135:9952–9967
Article
CAS
Google Scholar
Sreekanth BR, Peddy V, Vyas K (2007) Supramolecular synthon polymorphism in 2:1 cocrystal of 4-hydroxybenzoicacid and 2,3,5,6–tetramethylpyrazine. Chem Comm 9:2375–2377
Dannenberg JJ (1997) An introduction to hydrogen bonding: George AJ (University of Pittsburgh). Oxford University Press, New York
Google Scholar
Database of select committee on GRAS substances (SCOGS) Reviews (2018) US Food and Drug Administration, http://www.acessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?rpt=scogsListing.
Imamura M, Nakanishi K, Shiraki R, Onda K, Sasuga D, Yuda M (2012) Cocrystal of C-glycoside derivative and L-proline. US Patent 8, 097, 592 B2 (17 January 2012)
Thipparaboina R, Kumar D, Chavan RB, Shastri NR (2016) Multi drug co-crytals: towards the development of effective therapeutic hybrids. Drug Discov Today 21:481–490
Trask AV, Motherwell WDS, Jones W (2006) Physical stability enhancement of theophylline via cocrystallization. Int J Pharm 320:114–123
Article
CAS
Google Scholar
Singh BS (2012) Drug-drug cocrystals. Daru J Pharm Sci 20:45
Jiang L, Huang Y, Zhang Q, He H, Xu Y, Mei X (2014) Preparation and solid-state characterization of dapsone drug-drug cocrystals. Cryst Growth Des 14:4562–4573
Cosgrove SD, Jonaitis DT, Derrick SJC (2012) Novel ticagrelor co-crystal. World Intellectual Property Organization WO Patent 164, 286. 2012 A1(6 December 2012)
Sica DA (2002) Rationale for fixed-dose combinations in the treatment of hypertension: the cycle repeats. Drugs 62:443–462
Article
CAS
Google Scholar
Bangalore S, Kamalakkannan G, Parkar S, Messerli HF (2007) Fixed-dose combinations improve medication compliance: a meta-analysis. Am J Med 120:713–719
Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ (2011) Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci 100:2172–2181
Nugrahani I, Asyarie S, Soewandhi SN, Ibrahim S (2007) The antibiotic potency of amoxicillin-clavulanate co–crystal. Int J Pharmacol 3:475–481
Roche FH (1937) Basel (Switzerland). Swiss Patent CH 187826:1937
Google Scholar
Petrusevski G, Naumov P, Jovanovski G, Bogoeva GG, Ng SW (2008) Solid-state forms of sodium valproate, active component of the anticonvulsant drug epilim. Chem Med Chem 3:1377–1386
Meade EM (1991) Sodium hydrogen divalproate oligomer. US Patent 4, 988,731.A (29 January 1991)
Almansa C, Merce R, Tesson N, Farran J, Tomas J, Salaman PCR (2017) Co-crystal of tramadol hydrochloride-celecoxib (ctc): a novel API–API co-crystal for the treatment of pain. Cryst Growth Des 17:1884–1892
Buschmann HH, Tesson N, Farran J (2010) Cocrystals of tramadol and paracetamol. WO Patent 0, 69, 561 Al (24 June 2010)
Salaman PCR, Videla CS, Tesson N, Trilla CM (2011) Co-crystals of venlafaxine and celecoxib. WO Patent 0, 76, 420 A3 (30 June 2011)
Reddy JS, Dandela R, Saraswatula VG, Nagalapalli RK, Solomon AK, Iqbal J, Kruthiventi AK (2012) Novel cocrystals/molecular salts of metformin with oleoylethanolamide as an effective anti-diabetic + anti-obesity agent. WO Patent 0, 90, 225 A2 (5 July 2012)
Kruthiventi AK, Iqbal J, Reddy JS, Nagalapalli RK, Saraswatula VG, Solomon AK (2012) Pharmaceutical co-crystals of quercetin. US Patent 0, 129,923 A1 24 May 2012.
Buschmann HH, Sola CL, Benet BJ, Ceron BJC, Ramirez AJ (2013) Co-crystals of duloxetine and naproxen. EP Patent 2, 291, 345 B1 (13 March 2013)
Salaman PCR, Tesson N, Jimenez GC, Vaiana L (2013) Crystalline forms of sartans like telmisartan with beta blockers. EP Patent 2, 649, 996 A1, 16 October 2013.
Sowa C, Gold RE, Chiodo T, Vogel R (2013) Co-crystals of cyprodinil and dithianon. WO Patent 0, 30, 777 Al (7 March 2013)
Yuvaraja K, Khanam J (2014) Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal. 96:10–20
Article
CAS
Google Scholar
KM EI-S, Hosny KM (2018) Optimization of carvedilol solid lipid nanoparticles: an approach to control the release and enhance the oral bioavailability on rabbits. PLOS ONE 13(8):e0203405. https://doi.org/10.1371/journal.pone.0203405
Article
CAS
Google Scholar
Singh B, Khurana L, Bandyopadhyay S, Kapil R, Katare OP (2011) Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential. Drug Deliv. 18:599–612
Carvedilol (2017) DB01136, http://www.drugbank.ca/drugs/DB01136, Accessed 15 December 2019.
COREG (2017) www.acessdata.fda.gov/drugsatfda_docs/label/2005/020297s03lb/.pdf Accessed 15 December 2019.
Stafylas PC, Sarafidis PA (2008) Carvedilol in hypertension treatment. Vasc Health Risk Manag 4:23–30
Article
CAS
Google Scholar
Giugliano D, Acampora R, Marfella R, Rosa DN, Ziccardi P, Ragone R, Angelis DL, Donofrio F (1997) Metabolic and cardiovascular effects of carvedilol and atenolol in non-insulin-dependent diabetes mellitus and hypertension. A randomized, controlled trial. Ann Intern Med 126:955–959
Article
CAS
Google Scholar
Uzunlulu M, Oguz A, Yorulmaz E (2006) The effect of carvedilol on metabolic parameters in patients with metabolic syndrome. Int Heart J 47:421–430
Article
CAS
Google Scholar
Palash S, Kusuma VD, Clara D, Malviya N, Ganguly S, Gautam DR (2015) Cocrystals of hydrochlorothiazide: solubility and diffusion/permeability enhancements through drug–coformer interactions. Mol Pharm 12:1615–1622
Article
Google Scholar
Syarifah AR, Nurul AR, Siti SMK (2015) Screening of carbamazepine-ibuprofen co-crystal formation using non-stoichiometric and stoichiometric methods. Adv Mate Res 1113:417–421
Article
Google Scholar
Glomme A, Marz J, Dressman JB (2005) Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J Pharm Sci 94:1–16
Article
CAS
Google Scholar
Du Y, Cai Q, Xue J, Zhang Q (2016) Raman and terahertz spectroscopic investigation of cocrystal formation involving antibiotic nitrofurantoin drug and coformer 4-aminobenzoic acid. Crystals 6:164
Venugopalaiah P, Sravanthi D, Gobinath M, Kumar B, Dinesh R (2016) Pharmaceutical co-crystals - an approach to increase solubility and bioavailability. IJPIB 1:63–70
Google Scholar
Tomaszewska I, Karki S, Shur J, Price R, Fotaki N (2013) Pharmaceutical characterisation and evaluation of cocrystals: importance of in vitro dissolution conditions and type of conformer. Int J Pharm 453:380–388
Article
CAS
Google Scholar
Schultheiss N, Newman A (2009) Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des 9:2950–2967
Article
CAS
Google Scholar
Jain S, Patel N, Lin S (2015) Solubility and dissolution enhancement strategies: current understanding and recent trends. Drug Dev Ind Pharm 41:875–887
Article
CAS
Google Scholar
Gasper JF, Rathnanand M, Kulkarni V (2018) Mechanochemical synthesis of carvedilol cocrystals utilizing hot melt extrusion technology. J Pharm Innov. https://doi.org/10.1007/s12247-018-9360-y
Gasper JF, Rathnanand M (2019) Formulation optimization for gastroretentive drug delivery system of carvedilol cocrystals using design of experiment. J Pharm Innov. https://doi.org/10.1007/s12247-019-09393-5
Buschmann HH, Sola CL, Benet BJ, Ceron BJC (2010) Cocrystals of tramadol and NSAIDs. EP Patent 2, 177, 215 A1 (21 April 210)
Brittain HG, Felice PV (2015) Intravenous formulation with water-soluble cocrystals of acetyl salicylic acid and theanine. EP Patent 2, 427, 196 B1 (4 November 2015).