Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. G Chem 8(5):17–432. https://doi.org/10.1039/B517131H
Article
Google Scholar
Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Bio Adv 27(1):76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002
Article
CAS
Google Scholar
Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phy Chem 95(2):525–532. https://doi.org/10.1021/j100155a009
Article
CAS
Google Scholar
Yokoyama K, Welchons DR (2007) The conjugation of amyloid beta protein on the gold colloidal nanoparticles’ surfaces. Nano 18(10):105101. https://doi.org/10.1088/0957-4484/18/10/105101
Article
CAS
Google Scholar
Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticles exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468. https://doi.org/10.1016/j.scitotenv.2013.05.018
Article
CAS
PubMed
Google Scholar
Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. BioPro Bio Sym Eng 32(1):79. https://doi.org/10.1007/s00449-008-0224-6
Article
CAS
Google Scholar
Ontong JC, Singh S, Nwabor OF, Chusri S, Voravuthikunchai SP (2020) Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtusto mentosa leaf extract and silk sericin. Bio Lett 18:1–12. https://doi.org/10.1007/s10529-020-02971-5
Article
CAS
Google Scholar
Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361. https://doi.org/10.1021/la020835i
Article
CAS
Google Scholar
Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Bio Pest 3(1):394
CAS
Google Scholar
Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nano 18(10):105104. https://doi.org/10.1088/0957-4484/18/10/105104
Article
CAS
Google Scholar
Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nano Res 10(4):691–695. https://doi.org/10.1007/s11051-007-9288-5
Article
CAS
Google Scholar
Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan NJCSBB (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Coll Surf B76(1):50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008
Article
CAS
Google Scholar
Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteeen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15(2):113–120. https://doi.org/10.1016/j.jscs.2010.06.004
Article
CAS
Google Scholar
Kotakadi VS, Rao YS, Gaddam SA, Prasad TNVKV, Reddy AV, Gopal DS (2013) Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus Linn. G. Donn and its antimicrobial activity. Coll Surf B105:194–198. https://doi.org/10.1016/j.colsurfb.2013.01.003
Article
CAS
Google Scholar
Anuradha G, SyamaSundar B, Ramana MV (2014) Ocimum americanum L. leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization. Scholars Res Library Arch Appl Sci Res 6(3):59
Google Scholar
Sharada M, Ahuja A, Kaul MK (2003) Regeneration of plantlets via callus cultures in Celastrus paniculatus Willd-A rare endangered medicinal plant. J Plant Bio Chem Biotech 12(1):65–69. https://doi.org/10.1007/BF03233163
Article
Google Scholar
Khanna C (2007) Conservation of some useful medicinal plants of Haridwar district in Uttaranchal state. Medicinal Plants: Conservation and Cultivation, Uttaranchal, pp 147–166
Google Scholar
Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Bio Tech 18(1):83–86. https://doi.org/10.1007/BF03263300
Article
CAS
Google Scholar
Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Coll Surf B 79(2):488–493. https://doi.org/10.1016/j.colsurfb.2010.05.018
Article
CAS
Google Scholar
Ramana MV, Rao VJR, Anitha P, Sujatha T, Shantkriti S, Rao MC (2015) Synthesis and characterization of silver nanoparticles using Celastrus paniculatus leaf extract. Int J Res Appl Sci Eng Technol 3:958–961
Google Scholar
AnushaTS JMV, Elyas KK (2016) Callus induction and elicitation of total phenolics in callus cell suspension culture of Celastrus paniculatus–Willd, an endangered medicinal plant in India. Phar J 8(5). https://doi.org/10.5530/pj.2016.5.10
Raju NL, Prasad MNV (2007) Cytokinin-induced high frequency shoot multiplication in Celastrus paniculatus Willd., a red listed medicinal plant. Med Aro Plant Sci Biol 1:133–137
Google Scholar
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Phys Plan 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Article
CAS
Google Scholar
Netala VR, Kotakadi VS, Nagam V, Bobbu P, Ghosh SB, Tartte V (2015) First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Appl Nanosci 5(7):801–807. https://doi.org/10.1007/s13204-014-0374-6
Article
CAS
Google Scholar
Oke R, Thombre R, Pande AK (2015) Synthesis of plant-mediated silver nanoparticles using Tylophora indica Merr. (Pittakari) leaf extract and evaluation of its antimicrobial and anticancer activity. Int J Phar Bio Sci 6:311–318
CAS
Google Scholar
Kumari J, Singh A (2016) Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Gen Eng Bio 14(2):311–317. https://doi.org/10.1016/j.jgeb.2016.09.005
Article
Google Scholar
Prakash MB, Paul S (2012) Green synthesis of silver nanoparticles using Vincaroseus leaf extract and evaluation of their antimicrobial activities. Int J Appl Bio Pharm Tech 3(4):0976–4550. https://doi.org/10.1016/j.closurfb.2013..03.017
Article
Google Scholar
Rajeshkumar S, Kannan C, Annadurai G (2012) Synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed Padina tetrastromatica. Drug Today 4(10):511–513
CAS
Google Scholar
Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42
Article
Google Scholar
Padman AJ, Henderson J, Hodgson S, Rahman PK (2014) Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. Bio Lett 36(10):2079–2084. https://doi.org/10.1007/s10529-014-1579-1
Article
CAS
Google Scholar
Ali A, Mohammad S, Khan MA, Raja NI, Arif M, Kamil A, Mashwani Z (2019) Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculate. Artif Cells Nanomed Biotechnol 47(1):715–724. https://doi.org/10.1080/21691401.2019.1577884
Article
CAS
PubMed
Google Scholar
Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951. https://doi.org/10.1038/nbt.3330
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application:Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater:1–26. https://doi.org/10.1155/2019/3702518
Thomas TD, Philip B (2005) Thidiazuron-induced high-frequency shoot organogenesis from leaf-derived callus of a medicinal climber, Tylophora Indica (Burm. F.) Merrill. In Vitro Cell Dev Bio-Plant 41(2):124–128. https://doi.org/10.2307/4293828
Article
CAS
Google Scholar
Rao MS, Purohit SDN (2006) In vitro shoot bud differentiation and plantlet regeneration in Celastrus paniculatus Willd. Bio Plantarum 50(4):501–506. https://doi.org/10.1007/s10535-006-0079-0
Article
CAS
Google Scholar
Gowdru HB, Rajashekarappa S, Malleshappa KH, Maruthi KR, Krishna V (2011) In Vitro Regeneration of Inflorescence and Callus Enhancement of Celastrus paniculatus Willd. Med Aromatic Plant Sci Biotechnol 5(2):147–151
Google Scholar
Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S (2015) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5(1):73–81. https://doi.org/10.1007/s13204-014-0293-6
Article
CAS
Google Scholar
Noginov M, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachav VP, Shalaev VM (2007) The effect of gain and absorption on surface plasmonsin metal nanoparticles. Appl Phy B 86(3):455–460. https://doi.org/10.1007/s00340-006-2401-0
Article
CAS
Google Scholar
Suvith VS, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochimic Acta Part A 118:526–532. https://doi.org/10.1016/j.saa.2013.09.016
Article
CAS
Google Scholar
Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Coll Surf B96:69–74. https://doi.org/10.1016/j.colsurfb.2012.03.023
Article
CAS
Google Scholar
Basavegowda N, Idhayadhulla A, Lee YR (2014) Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Mater Sci Eng C43:58–64. https://doi.org/10.1016/j.msec.2014.06.043
Article
CAS
Google Scholar
Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta Part A 101:184–190. https://doi.org/10.1016/j.saa.2012.09.031
Article
CAS
Google Scholar