Wiley SR, Goodwin RG, Smith CA (1996) Reverse signaling via CD30 ligand. J Immunol 157(8):3635–3639
CAS
PubMed
Google Scholar
Nielson C, Fischer R, Fraga G, Aires D (2016) Loss of CD30 expression in anaplastic largecell lymphoma following brentuximab therapy. J Drugs Dermatol 15(7):894–895
PubMed
Google Scholar
Gottesman SR (2016) CD30: receptor, marker, target. Path Lab Med Int 8:27–36
Article
Google Scholar
Lee SY, Lee SY, Kandala G, Liou ML, Liou HC, Choi Y (1996) CD30/TNF receptor-associated factor interaction: NF-kappa B activation and binding specificity. Proc Natl Acad Sci USA 93(18):9699–9703. https://doi.org/10.1073/pnas.93.18.9699
Article
CAS
PubMed
Google Scholar
Shi JH, Sun SC (2018) Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways. Front Immunol 9:1849. https://doi.org/10.3389/fimmu.2018.01849
Article
CAS
PubMed
PubMed Central
Google Scholar
Oflazoglu E, Grewal IS, Gerber H (2009) Targeting CD30/CD30L in oncology and autoimmune and inflammatory diseases. Adv Exp Med Biol 647:174–185. https://doi.org/10.1007/978-0-387-89520-8_12
Article
CAS
PubMed
Google Scholar
Sonar S, Lal G (2015) Role of tumor necrosis factor superfamily in neuroinflammation and autoimmunity. Front. Immunol. 6:364
Article
Google Scholar
Chiarle R, Podda A, Prolla G, Podack ER, Thorbecke GJ, Inghirami G (1999) CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2-sensitive pathway. J Immunol 163(1):194–205
CAS
PubMed
Google Scholar
Hombach AA, Görgens A, Chmielewski M, Murke F, Kimpel J, Giebel B, Abken H (2016) Superior therapeutic index in lymphoma therapy: CD30(+) CD34(+) hematopoietic stem cells resist a chimeric antigen receptor T-cell attack. Mol Ther. 24(8):1423–1434. https://doi.org/10.1038/mt.2016.82
Article
CAS
PubMed
PubMed Central
Google Scholar
Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE, Law CL, Doronina SO, Siegall CB, Senter PD, Wahl AF (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 102(4):1458–1465. https://doi.org/10.1182/blood-2003-01-0039
Article
CAS
PubMed
Google Scholar
Deng C, Pan B, O’Connor OA (2013) Brentuximab vedotin. Clin Cancer Res 19(1):22–27. https://doi.org/10.1158/1078-0432.CCR-12-0290
Article
CAS
PubMed
Google Scholar
Schmidt T, Bergner A, Schwede T (2014) Modelling three-dimensional protein structures for applications in drug design. Drug Dis Today 19(7):890–987. https://doi.org/10.1016/j.drudis.2013.10.027
Article
CAS
Google Scholar
Goldfeld DA, Zhu K, Beuming T, Friesner RA (2013) Loop prediction for a GPCR homology model: algorithms and results. Proteins 81(2):214–228. https://doi.org/10.1002/prot.24178
Article
CAS
PubMed
Google Scholar
Mehmood MA, Sehar U, Ahmad N (2014) Use of bioinformatics tools in different spheres of life sciences. J Data Mining Genom Proteom 5:158
Google Scholar
Combet C, Blanchet C, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150. https://doi.org/10.1016/S0968-0004(99)01540-6
Article
CAS
PubMed
Google Scholar
Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181. https://doi.org/10.1093/nar/gkv342
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Freddolino PL, Zhang Y (2017) COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res 45(W1):W291–W299. https://doi.org/10.1093/nar/gkx366
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40(W1):W294–W297. https://doi.org/10.1093/nar/gks493
Article
CAS
PubMed
PubMed Central
Google Scholar
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl Crystal 26(2):283–291. https://doi.org/10.1107/S0021889892009944
Article
CAS
Google Scholar
Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486. https://doi.org/10.1007/BF00228148
Article
CAS
PubMed
Google Scholar
Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350. https://doi.org/10.1093/bioinformatics/btq662
Article
CAS
PubMed
Google Scholar
Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40(W1):W471–W477. https://doi.org/10.1093/nar/gks372
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47(D1):D1102–D1109. https://doi.org/10.1093/nar/gky1033
Article
PubMed
Google Scholar
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3(10):33. https://doi.org/10.1186/1758-2946-3-33
Article
CAS
PubMed
PubMed Central
Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334
Article
CAS
PubMed
PubMed Central
Google Scholar
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction pro-filer. Nucleic Acids Res 43(W1):W443–W447. https://doi.org/10.1093/nar/gkv315
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S (2018) CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 46(1):338–343
Article
Google Scholar
Mason JM, Arndt KM (2004) Coiled coil domains: stability, specificity and biological implications. ChemBioChem 5(2):170–176. https://doi.org/10.1002/cbic.200300781
Article
CAS
PubMed
Google Scholar
Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71(1):261–277. https://doi.org/10.1002/prot.21715
Article
CAS
PubMed
Google Scholar
Fischer M, Harvima IT, Carvalho RFS, Möller C, Naukkarinen A, Enblad G, Nilsson G (2006) Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J Clin Invest 116(10):2748–2756. https://doi.org/10.1172/JCI24274
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28(12):1937–1955. https://doi.org/10.1039/c1np00051a
Article
CAS
PubMed
PubMed Central
Google Scholar
Basu A, Kurien BT, Tran H, Byrd B, Maher J, Schell J, Masek E, Barrett JR, Lyons TJ, Betts NM, Scofield RH (2018) Strawberries decrease circulating levels of tumor necrosis factor and lipid peroxides in obese adults with knee osteoarthritis. Food Funct 9(12):6218–6226. https://doi.org/10.1039/C8FO01194J
Article
CAS
PubMed
PubMed Central
Google Scholar
Oso BJ, Boligon AA, Oladiji AT (2018) Metabolomic profiling of ethanolic extracts of the fruit of Xylopia aethiopica (Dunal) A. Rich using gas chromatography and high-performance liquid chromatography techniques. J Pharm Phytochem 7(1):2083–2090
CAS
Google Scholar
Oso BJ, Oyewo EB, Oladiji AT (2017) Ethanolic, nhexane and aqueous partitioned extracts of Xylopia aethiopica fruit modulated inflammatory responses in turpentine oil induced acute inflammation in male Wistar rats. Int J Res Health Sci 5(2):1–10
Google Scholar
Elhassan IA, Elamin EE, Ayoub SMH (2010) Chemical composition of essential oil in dried fruits of Xylopia aethiopica from Sudan. Open Access J Med Arom Plants 1(1):24–28
CAS
Google Scholar
Ezekwesili CN, Nwodo OFC, Eneh FU, Ogbunugafor HA (2010) Investigation of the chemical composition and biological activity of Xylopia aethiopica Dunal (Annonacae). Afr J Biotech 9(43):7352–7356
CAS
Google Scholar
Oso BJ, Oyeleke OM, Oladiji AT (2018) Inhibition of the expressions of splenic TNF-alpha receptor superfamily 8, CD3 and CD20 by ethanolic extract of Xylopia aethiopica (Dunal) A. Rich Int J Bio Sci Appl 5(2):29–33
Google Scholar
Wu R (2008) McMahon TB (2008) Investigation of cation-pi interactions in biological systems. J Am Chem Soc. 130(38):12554–12555. https://doi.org/10.1021/ja802117s
Article
CAS
PubMed
Google Scholar
Pyrkov TV, Pyrkova DV, Balitskaya ED, Efremov RG (2009) The role of stacking interactions in complexes of proteins with adenine and Guanine fragments of ligands. Acta Naturae 1(1):124–127. https://doi.org/10.32607/20758251-2009-1-1-124-127
Article
CAS
PubMed
PubMed Central
Google Scholar
van Westen GJP, Gaulton A, Overington JP (2014) Chemical, target, and bioactive properties of allosteric modulation. PLoS Comput Biol 10:e1003559
Article
Google Scholar
Jamroz M, Kolinski A, Kmiecik S (2013) CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res 41(W1):W427–W431. https://doi.org/10.1093/nar/gkt332
Article
PubMed
PubMed Central
Google Scholar