Burgunder J, Gasser T, Harbo H, Finsterer J (2010) Overview of the New European Federation of Neurological Societies’ Guidelines on Molecular Diagnosis of Neurological Disorders. Eur Neurol Rev 5:12–17. https://doi.org/10.17925/ENR.2010.05.02.12
Article
Google Scholar
Heemels MT (2016) Neurodegenerative diseases. Nature 539(7628):179. https://doi.org/10.1038/539179a
Article
PubMed
Google Scholar
GBD (2017) Neurological disorders collaborator group. Global, regional, and national burden of neurological disorders during 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet Neurol 16:877–897. https://doi.org/10.1016/S1474-4422(17)30299-5
Article
Google Scholar
Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL (2010) Ageing and neurodegenerative diseases. Ageing Res Rev 9:S36–S46
Article
PubMed
Google Scholar
Delnooz CCS, van de Warrenburg BPC (2012) Current and future medical treatment in primary dystonia. Ther Adv Neurol Disord 5(4):221–240
Article
PubMed
PubMed Central
CAS
Google Scholar
Mehan S, Sharma D, Sharma G, Arora R, Sehgal V (2012) Dementia—a complete literature review on various mechanisms involves in pathogenesis and an intracerebroventricular streptozotocin induced Alzheimer’s disease. INTECH Open Access Publisher Available online at: http://www.intechopen.com/books/inflammatory-diseases-immunopathology-clinical-and-pharmacologicalbases/alzheimer-s-disease-an-updated-review-on-pathogenesis-and-intracerebroventricular-streptozotocin-ind
Erkkinen MG, Kim MO, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10(4). https://doi.org/10.1101/cshperspect.a033118
Burgunder JM (2003) Neurodegeneration. IUBMB Life 55(6):291. https://doi.org/10.1080/1521654031000153007
Article
CAS
PubMed
Google Scholar
Katsnelson A, De Strooper B, Zoghbi HY (2016) Neurodegeneration: From cellular concepts to clinical applications. Sci Transl Med 8(364):364ps18. https://doi.org/10.1126/scitranslmed.aal2074
Article
CAS
PubMed
Google Scholar
Migliore L, Coppede F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 667:82–97. https://doi.org/10.1016/j.mrfmmm.2008.10.011
Article
CAS
PubMed
Google Scholar
Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399. https://doi.org/10.1101/cshperspect.a009399
Article
CAS
PubMed
PubMed Central
Google Scholar
Held P (2012) An introduction to reactive oxygen species: measurement of ROS in cells (white paper). BioTek Instruments, Inc, Winooski
Google Scholar
Mani S (2015) Production of reactive oxygen species and its implication in human diseases. In: Rani V, Yadav UC (eds) Free radicals in human health and disease. Springer, New Delhi, pp 3–15
Chapter
Google Scholar
Harman D (1956) Aging: a theory based on free radical and radiation Chemistry. J Gerontol 11(3):298–300. https://doi.org/10.1093/geronj/11.3.298
Article
CAS
PubMed
Google Scholar
Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129
Article
CAS
PubMed
Google Scholar
Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74
Article
CAS
PubMed
PubMed Central
Google Scholar
Cobb C, Cole M (2015) Oxidative and Nitrative Stress in Neurodegeneration. Neurobiol Dis 84:4–21
Article
CAS
PubMed
PubMed Central
Google Scholar
Chamulitrat W, Mason RP (1989) Lipid peroxyl radical intermediates in the peroxidation of polyunsaturated fatty acids by lipoxygenase. Direct electron spin resonance investigations. J Biol Chem 264(35):20968–20973
Article
CAS
PubMed
Google Scholar
Dasuri K, Zhang L, Keller JN (2013) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 62:170–185
Article
CAS
PubMed
Google Scholar
Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration, oxidative medicine and cellular longevity. 428010:11. https://doi.org/10.1155/2012/428010
Song P, Zou MH (2012) Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic Biol Med 52(9):1607–1619
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12. https://doi.org/10.3389/fnagi.2010.00012
Article
PubMed
PubMed Central
Google Scholar
Ferreira ME, de Vasconcelos AS, da Costa VT, da Silva TL, da Silva BA, Gomes AR, Dolabela MF, Percário S (2015) Oxidative Stress in Alzheimer's Disease: Should We Keep Trying Antioxidant Therapies? Cell Mol Neurobiol 35(5):595–614. https://doi.org/10.1007/s10571-015-0157-y
Article
CAS
PubMed
Google Scholar
Breydo L, Wu JW, Uversky VN (2012) α-Synuclein misfolding and Parkinson's disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1822(2):261–285. https://doi.org/10.1016/j.bbadis.2011.10.002
Article
CAS
Google Scholar
Baldi I, Lebailly P, Mohammed B, Letenneur L, Dartigues JF, Brochard P (2003) Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 157(5):409–414. https://doi.org/10.1093/aje/kwf216
Article
PubMed
Google Scholar
Solfrizzi V, Capurso C, Introno AD, Colacicco AM, Santamato A, Ranieri M, Fiore P, Capurso A, Panza F (2008) Lifestyle-related factors in predementia and dementia syndromes. Expert Rev Neurother 8(1):133–158. https://doi.org/10.1586/14737175.8.1.133
Article
PubMed
Google Scholar
Dobson CM, Sali A, Karplus M (1998) Protein folding—a perspective from theory and experiment. Angew Chem Int Ed Eng 37:868–893
Article
Google Scholar
Bartlet AI, Radford SE (2009) An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 16:582–588
Article
CAS
Google Scholar
Hartl FU, Hartl MH (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581
Article
CAS
PubMed
Google Scholar
Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11:111–128
Article
PubMed
PubMed Central
Google Scholar
Morimoto RI (2008) Roteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22(11):1427–1438
Article
CAS
PubMed
PubMed Central
Google Scholar
Pegoraro G, Voss TC, Martin SE, Tuzmen P, Guha R, Misteli T (2012) Identification of mammalian protein quality control factors by high-throughput cellular imaging. PLoS ONE 7(2):e31684
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobson CM (2006) Protein aggregation and its consequences for human disease. Protein Pept Lett 13(3):219–227
Article
CAS
PubMed
Google Scholar
Lin X, Zhang N (2018) Berberine: pathways to protect neurons. Phytother Res 32(8):1501–1510
Article
PubMed
Google Scholar
Tewari D, Stankiewicz AM, Mocan A, Archana NS, Tzvetkov NT, Huminiecki L, Horbańczuk JO, Atanasov AG (2018) Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front Aging Neurosci 10:3. https://doi.org/10.3389/fnagi.2018.00003
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohamed Ali S, Vijayaraghavan K, Rajkumar J, Bukhari SN, Al-Sayed B (2017) Chromolaena odorata: a neglected weed with a wide spectrum of pharmacological activities (Review). Mol Med Rep 15(3):1007–1016
Article
CAS
Google Scholar
MohamedAli S (2019) A comprehensive review on Phyllanthus derived natural products as potential chemotherapeutic and immunomodulators for a wide range of human diseases. Biocat Agri Biotechnol 17:529–537
Article
Google Scholar
MohamedAli S, Sddiqua A (2020a). Calotropis—a multi-potential plant to humankind: Special focus on its wound healing efficacy. Biocat Agri Biotechnol 28: 101725. https://doi.org/10.1016/j.bcab.2020.101725
Mohamed Ali S, Siddiqua A (2020b) Modern phytomedicine in treating diabetic foot ulcer: progress and opportunities. In: Zubair BM et al (eds) Diabetic Foot Ulcer, (Chapter 18): Diabetic Foot Ulcer. Springer, Singapore, pp 281–313
Google Scholar
Kimura I (2006) Medical benefits of using natural compounds and their derivatives having multiple pharmacological actions. Yakugaku Zasshi 126(3):133–143
Article
CAS
PubMed
Google Scholar
Karimi A, Majles M, Mahmoud RK (2015) Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 4(1):27–30
CAS
PubMed
PubMed Central
Google Scholar
Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM (2013, 2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contributioto modern therapeutics. Evid Based Complement Alternat Med 627375. Published online 2013 Mar 24. https://doi.org/10.1155/2013/627375
Gordon MC, David JN (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. Author manuscript; available in PMC 2014 Jun 1. Published in final edited form as: Biochim Biophys Acta 1830(6):3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
Article
CAS
Google Scholar
Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249
Article
CAS
PubMed
PubMed Central
Google Scholar
Pawel S, Magdalena M, Elżbieta MO (2012) Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int J Mol Sci 13(1):427–452. https://doi.org/10.3390/ijms13010427
Article
CAS
Google Scholar
Macarrón R, Hertzberg RP (2011) Design and implementation of high throughput screening assays. Mol Biotechnol 47:270–285
Article
PubMed
CAS
Google Scholar
Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3(4):200–201. https://doi.org/10.4103/2231-4040.104709
Article
PubMed
PubMed Central
Google Scholar
Raskin I, Ribnicky D, Komarnytsky S, Neboj PA, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O'Neal J, Cornwell T, Pastor I, Fridlender B (2003) Plants and human health in the twenty-first century. Trends Biotechnol 20:522–531
Article
Google Scholar
Long F, Yang H, Xu Y, Hao H, Li P (2015) A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Sci Rep 5:12361. https://doi.org/10.1038/srep12361
Article
CAS
PubMed
PubMed Central
Google Scholar
Fazili NA, Naeem A, Ashraf GM, Hua GS, Kamal MA (2015) Therapeutic interventions for the suppression of Alzheimer’s disease: quest for a remedy. Curr Drug Metab 16(5):346–353
Article
CAS
PubMed
Google Scholar
Dey A, De JN (2015) Neuroprotective therapeutics from botanicals and phytochemicals against Huntington’s disease and related neurodegenerative disorders. J Herb Med 5(1):1–19
Article
Google Scholar
Elufioye TO, Berida TI, Habtemariam S (2017) Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evid-Based Comple Alter Med 3574012:27. https://doi.org/10.1155/2017/3574012
Article
Google Scholar
Dubey S, Gautam S, Kowthavarapu K, Tejas A, Ranendra S, Gaurav G (2018) Herbal medicines in neurodegenerative disorders: an evolutionary approach through novel drug delivery system. J Environ Pathol Toxicol Oncol 37. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018027246
Di Paolo M, Papi L, Gori F, Turillazzi E (2019) Natural products in neurodegenerative diseases: a great promise but an ethical challenge. Int J Mol Sci 20(20):5170
Article
CAS
PubMed Central
Google Scholar
Zhou X, Seto SW, Chang D, Kiat H, Razmovski-Naumovski V, Chan K, Alan B (2016) Synergistic effects of chinese herbal medicine: a comprehensive review of methodology and current research. Front Pharmacol 7:201. https://doi.org/10.3389/fphar.2016.00201
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhat SA, Kamal MA, Yarla NS, Ashraf GM (2017) Synopsis on managment strategies for neurodegenerative disorders: Challenges from bench to bedside in successful drug discovery and development. Curr Top Med Chem 17(12):1371–1378
Article
CAS
PubMed
Google Scholar
Dadhania VP, Trivedi PP, Vikram A, Tripathi DN (2016) Nutraceuticals against neurodegeneration: a mechanistic insight. Curr Neuropharmacol 14(6):627–640
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar GP, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacogn Rev 6(12):81–90
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh S, Dikshit M (2007) Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Rev 54(2):233–250
Article
CAS
PubMed
Google Scholar
Vasant MS, Kumar H, Kim IS, Koppulla S, Kim BW, Choi DK (2013) Strategic selection of neuroinflammatory models in Parkinson’s disease: evidence from experimental studies. CNS Neurol Disord Drug Targets (Formerly Current Drug Targets-CNS & Neurolo Disorder) 12(5):680–697
Google Scholar
Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future In Prog. Brain Res 184:133–157
Article
CAS
Google Scholar
Bagli E, Goussia A, Moschos MM, Agnantis N, Kitsos G (2016) Natural compounds and neuroprotection: mechanisms of action and novel delivery systems. In Vivo 30(5):535–547
CAS
PubMed
Google Scholar
Wang ZY, Liu JY, Yang CB, Malampati S, Huang YY, Li MX, Li M, Song JX (2017) Neuroprotective natural products for the treatment of parkinson’s disease by targeting the autophagylysosome pathway: a systematic review. Phytother Res 31(8):1119–1127. https://doi.org/10.1002/ptr.5834
Article
CAS
PubMed
Google Scholar
Rahman I, Chung S (2010) Dietary polyphenols, deacetylases and chromatin remodeling in inflammation. J Nutrigenet Nutrigenomics 3(4-6):220–230
Article
PubMed
Google Scholar
Harvey AL, Clark RL, Mackay SP, Johnston BF (2010) Current strategies for drug discovery through natural products. Expert Opin Drug Discovery 5(6):559–568
Article
CAS
Google Scholar
Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108(19):8030–8035. https://doi.org/10.1073/pnas.1016088108
Article
PubMed
PubMed Central
Google Scholar
Ansari R, Mahta A, Mallack E, Luo JJ (2014) Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 10(4):281–288
Article
PubMed
PubMed Central
Google Scholar
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134
Article
PubMed
Google Scholar
Sanders LH, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, Chu CT, Van Houten B, Greenamyre JT (2014) Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson’s disease. Neurobiol Dis 70:214–223
Article
CAS
PubMed
PubMed Central
Google Scholar
Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8(7):721–738
Article
CAS
PubMed
Google Scholar
Mercuri NB, Bernardi G (2005) The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol Sci 26(7):341–344
Article
CAS
PubMed
Google Scholar
Mythri RB, Bharath MM (2012a) Curcumin: a potential neuroprotectiveagent in Parkinson’s disease. Curr Pharm Des 18(1):91–99
Article
CAS
PubMed
Google Scholar
Mythri RB, Harish G, Bharath MM (2012b) Therapeutic potential of natural products in Parkinson’s disease. Recent Pat Endocr Metab Immune Drug Discov 6(3):181–200
Article
CAS
PubMed
Google Scholar
Kandinov B, Giladi N, Korczyn AD (2009) Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 15(1):41–46
Article
PubMed
Google Scholar
Leonoudakis D, Rane A, Angeli S, Lithgow GJ, Andersen JK, Chinta SJ (2009) Smoking and tea consumption delay onset of Parkinson's disease. Parkinsonism Relat Disord 15(1):41–46
Article
Google Scholar
Sawa A, Tomoda T, Bae BI (2003) Mechanisms of neuronal cell death in Huntington’s disease. Cytogenet Genome Res 100(1-4):287–295
Article
CAS
PubMed
Google Scholar
Kumar A (2010) Huntington’s disease: pathogenesisto animal models. Pharmacol Rep 62(1):1–14
Article
CAS
PubMed
Google Scholar
Krobitsch S, Kazantsev AG (2011) Huntington’s disease: from molecular basis to therapeutic advances. Int J Biochem Cell Biol 43(1):20–24
Article
CAS
PubMed
Google Scholar
Singhal AK, Naithani V, Bangar OP (2012) Medicinal plants with apotential to treat Alzheimer and associated symptoms. Int J Nutr Pharmacol Neurol Dis 2(2):84
Article
Google Scholar
Farrer LA, Cupples LA, Wiater P, Conneally PM, Gusella JF, Myers RH (1993) The normal Huntington disease (HD) allele, or a closely linked gene, influences age at onset of HD. Am J Hum Genet 53(1):125–130
CAS
PubMed
PubMed Central
Google Scholar
Farooqui T, Farooqui AA (2009) Aging: an important factor for thepathogenesis of neurodegenerative diseases. Mech Ageing Dev 130(4):203–215
Article
CAS
PubMed
Google Scholar
Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379–387
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu PF, Zhang Z, Wang F, Chen JG (2010) Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/ reperfusion injury. Acta Pharmacol Sin 31(12):1523–1531
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandhya S, Vinod K, Kumar S (2010) Herbs used for brain disorders. Hygeia J Drugs Med 2:38–45 (Sandhya.S et all, Hygeia.J.D.Med, vol.2 (1) 2010). www.hygeiajournal.com
Google Scholar
Shinomol GK, Muralidhara (2011) Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain. Phytomed 18(4):317–326
Article
Google Scholar
Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C (2001) Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 25(7):1341–1357
Article
CAS
Google Scholar
Visioli F, Riso P, Grande S, Galli C, Porrini M (2003) Protective activity of tomato products on in vivo markers of lipid oxidation. Eur J Nutr 42(4):201–206. https://doi.org/10.1007/s00394-003-0415-5
Article
CAS
PubMed
Google Scholar
Baba NH, Antoniades K, Habbal Z (1999) Effects of dietary canola, olive, and linolenic acid enriched olive oils on plasma lipids, lipid peroxidation and lipoprotein lipase activity in rats. Nutr Res 19(4):601–612
Article
CAS
Google Scholar
Hsiao G, Fong TH, Tzu NH, Lin KH, Chou DS, Sheu JR (2004) A potent antioxidant, lycopene, affords neuroprotection against microglia activation and focal cerebral ischemia in rats. Vivo 18(3):351–356
CAS
Google Scholar
Kumar P, Kumar A (2009) Effect of lycopene and epigallocatechin-3- gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: a novel nitric oxide mechanism. Food Chem Toxicol 47(10):2522–2530
Article
CAS
PubMed
Google Scholar
Kumar P, Padi SS, Naidu PS, Kumar A (2007a) Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms. Fundam Clin Pharmacol 21(3):297–306. https://doi.org/10.1111/j.1472-8206.2007.00485.x
Article
CAS
PubMed
Google Scholar
Raso GM, Meli R, Di Carlo G, Pacilio M, Di Carlo R (2001) Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci 68(8):921–931. https://doi.org/10.1016/S0024-3205(00)00999-1
Article
CAS
PubMed
Google Scholar
Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30(4):433–446
Article
CAS
PubMed
Google Scholar
Nishimura M, Okimura Y, Fujita H, Yano H, Lee J, Suzaki E, Inoue M, Utsumi K, Sasaki J (2008) Mechanism of 3-nitropropionic acid-induced membrane permeability transition of isolated mitochondria and its suppression by L-carnitine. Cell Biochem Funct 26(8):881–891
Article
CAS
PubMed
Google Scholar
Kumar P, Padi SS, Naidu PS, Kumar A (2007b) Possible neuroprotective mechanisms of curcumin in attenuating 3-nitropropionic acid-induced neurotoxicity. Methods Find Exp Clin Pharmacol 29(1):19–25
Article
CAS
PubMed
Google Scholar
Kumar P, Padi SSV, Naidu PS, Kumar A (2006) Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioural changes: possible neuroprotective mechanisms. Behav Pharmacol 17(5-6):485–492
Article
CAS
PubMed
Google Scholar
Berchtold NC, Cotman CW (1998) Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol Aging 19(3):173–189
Article
CAS
PubMed
Google Scholar
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191
Article
PubMed
Google Scholar
Takahashi RH, Nagao T, Gouras GK (2017) Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol Int 67(4):185–193. https://doi.org/10.1111/pin.12520
Article
CAS
PubMed
Google Scholar
Szeto JY, Lewis SJJ, Lewis S (2016) Current treatment options for Alzheimer’s disease and Parkinson’s disease dementia. Curr Neuropharmacol 14(4):326–338
Article
CAS
PubMed
PubMed Central
Google Scholar
Behl C, Moosmann B (2002) Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radic Biol Med 33(2):182–191. https://doi.org/10.1016/S0891-5849(02)00883-3
Article
CAS
PubMed
Google Scholar
Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152(4):871–877
CAS
PubMed
PubMed Central
Google Scholar
Heo HJ, Lee CY (2005) Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. J Agric Food Chem 53(6):1984–1989
Article
CAS
PubMed
Google Scholar
Ma T, Tan MS, Yu JT, Tan L (2014) Resveratrol as a therapeutic agent for Alzheimer’s disease. Biomed Res Int 2014:350516. Published online 2014 Nov 26. https://doi.org/10.1155/2014/350516
Article
CAS
PubMed
PubMed Central
Google Scholar
Runyoro D, Ngassapa O, Vagionas K, Aligiannis N, Graikou K, Chinou I (2009) Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Planta Med 75. https://doi.org/10.1055/s-0029-1234339
Paton A, Harley MR, Harley MM (1999) Ocimum: an overview of classification and relationships. In: Hiltunen R, Holm Y (eds) Basil: The Genus Ocimum. Harwood Academic Publishers, Amsterdam, pp 1–38
Google Scholar
Paton A, Putievsky E (1996) Taxonomic problems and cytotaxonomic relationships between and within varieties of Ocimum basilicum and related species (Labiatae). Kew Bull 51:509–524
Article
Google Scholar
Inbaneson S, Sundaram R, Suganthi P (2012) In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pac J Trop Med 5:103–106. https://doi.org/10.1016/S1995-7645(12)60004-2
Article
PubMed
Google Scholar
Bihari GC, Manaswini B, Prabhat J, Kumar TS (2011a) Pharmacognostical and phytochemical investigation of various tulsi plants available in south eastern Odisha. Int J Res Pharmaceut Biomed Sci 2(2):605–610 2011 Vol.2 No.2 pp.605-610 ref.14 http://www.ijrpbsonline.com/files/RS0
Google Scholar
Blank AF, Santa Rosa YR, de Carvalho Filho JLS, dos Santos CA, de Fátima A-BM, dos Santos NE (2012) A diallel study of yield components and essential oil constituents in basil (Ocimum basilicum L.). Ind Crop Prod 38:93–98. https://doi.org/10.1016/j.indcrop.2012.01.015
Article
CAS
Google Scholar
Hiltunen R, Holm Y (1999) Bioactivity of basil. In: Hiltunen R, Holm Y (eds) Basil: The Genus Ocimum. Harwood Academic Publishers, The Netherlands, pp 113–135 R Hiltunen, Y Holm - Basil: the genus Ocimum 1999 - Basil: the genus Ocimum. - CAB Direct; https://www.cabdirect.org
Chapter
Google Scholar
Bilal A, Jahan N, Ahmed A, Bilal SN, Habib S, Hajra S (2012) Phytochemical and pharmacological studies on Ocimum basilicum Linn-A review. Int J Curr Res Rev 4:73–83
CAS
Google Scholar
Sundarraju D, Anbu J, Ravichandran V, Senthil Kumar KL (2014) In vitro free radical scavenging potential of poly herbal extract. Int J Phytopharmacol 5(2):71–75
Google Scholar
Chattopadhyay RR (1999) A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol 67:367–372
Article
CAS
PubMed
Google Scholar
Duke JA, Ayensu ES (1985) Medicinal plants of China. Reference Publications
Mohd-Zahid MH, Jalil J, Chan KM, Azmi N (2018) Neuroprotective effects of Ocimum basilicum extract against hydrogen peroxide-induced oxidative stress in SK-N-SH neuroblastoma cells. Sains Malaysiana 47(9):2129–2139. https://doi.org/10.17576/jsm-2018-4709-22
Article
CAS
Google Scholar
Pullaiah T (2006) Encyclopaedia of world medicinal plants. Daya books
Eftekhar N, Moghimi A, Nema MR, Saeideh S, Boskabady MH (2019) Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum leaves and its effect on lung pathological changes in an ovalbumin-induced rat model of asthma. BMC Complement Altern Med 19:349. https://doi.org/10.1186/s12906-019-2765-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Adiguzel A, Gulluce M, Sengul M, Ogutcu H, Sahin F, Karaman (2005) Antimicrobial effects of Ocimum basilicum (Labiatae) extract. Turk J Biol 29:155–160 https://journals.tubitak.gov.tr/biology/abstract.htm?id=7635
Google Scholar
Akhtar MS, Munir M (1989) Evaluation of the gastric antiulcerogenic effects of Solanum nigrum, Brassica oleracea and Ocimum basilicum in rats. J Ethnopharmacol 27(1-2):163–176
Article
CAS
PubMed
Google Scholar
Dasgupta T, Rao AR, Pramod Y (2004) Chemomodulatory efficacy of Basil leaf (Ocimum basilicum) on drug metabolizing and antioxidant enzymes, and on carcinogen-induced skin and forestomach papillomagenesis. Phytomed Int J Phytother Phytopharmacol 11:139–151
CAS
Google Scholar
Bihari CG, Manaswini B, Kumar JP, Kumar TS (2011) Pharmacognostical and phytochemical investigation of various tulsiplants available in south eastern odisha. Int J Res Pharmaceut Biomed Sci 2(2):60–63 International Journal of Research in Pharmaceutical and Biomedical Sciences 2011 Vol.2 No.2 pp.605-610 ref.14) http://www.ijrpbsonline.com/files/RS0
Google Scholar
Zeggwagh N, Thierry S, Eddouks M (2007) Anti-hyperglycaemic and hypolipidemic effects of Ocimum basilicum aqueous extract in diabetic rats. Am J Pharmacol Toxicol 2:123–129
Article
Google Scholar
Marzouk AM (2009) Hepatoprotective triterpenes from hairy root cultures of Ocimum basilicum L. Z Naturforsch C 64:201–209
Article
CAS
PubMed
Google Scholar
Dashputre NL, Naikwade NS (2010) Preliminary immunomodulatory activity of aqueous and ethanolic leaves extracts of Ocimum basilicum Linn in mice. Int J Pharm Tech Res 2:1342–1349 International Journal of PharmTech Research 2010 Vol.2 No.2 pp.1342-1349 ref.26) http://sphinxsai.com/s_v2_n2/PT_V.2No
CAS
Google Scholar
Shakeri F, Hosseini M, Ghorbani A (2019) Neuropharmacological effects of Ocimum basilicum and its constituents. Physiol Pharmacol 23:70–81 http://ppj.phypha.ir/article-1-1450-en.html (http://eprints.mums.ac.ir/id/eprint/28229
Google Scholar
Tewari D, Pandey H, Sah A, Meena H, Aarti M (2012) Pharmacognostical and biochemical investigation of Ocimum kilimandscharicum plants available in western Himalayan region. Asian J Plant Sci Res 2:446–451 www.pelagiaresearchlibrary.com
Google Scholar
Okoye FBC, Obonga WO, Onyegbule FA, Ndu OO, Ihekwereme CP (2014) Chemical composition and anti-inflammatory activity of essential oils from the leaves of Ocimum basilicum l. and Ocimum gratissimum L.(lamiaceae). Int J Pharm Sci Res 5(6):2174–2180. https://doi.org/10.13040/IJPSR.0975-8232.5(6).2174-80
Article
CAS
Google Scholar
Labra M, Miele M, Ledda B, Fabrizio Grassi F, Mazzei M, Sala F (2004) Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci 167:725–731
Article
CAS
Google Scholar
Telci I, Bayram E, Yilmaz G, Avci B (2006) Variability in essential oil composition of Turkish basils (Ocimun basilicum L.). Biochem Syst Ecol 34(6):489–497. https://doi.org/10.1016/j.bse.2006.01.009
Article
CAS
Google Scholar
Hanif MA, Al-Maskari MY, Al-Maskari A, Al-Shukaili A, Al-Maskari AY, Al-Sabahi JN (2011) Essential oil composition, antimicrobial and antioxidant activities of unexplored Omani basil. J Med Plant Res 5:751–757 (Journal of Medicinal Plants Research Vol. 5(5), pp. 751-757, 4 March, 2011) Available online at http://www.academicjournals.org/JMPR
CAS
Google Scholar
Kwee EM, Niemeyer ED (2011) Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chem 128(4):1044–1050
Article
CAS
Google Scholar
Bhatt R, Neeraj M, Kumar P (2013) Phytochemical, pharmacological and pharmacokinetics effects of rosmarinic acid. J Pharma Sci Innov 2:28–34. https://doi.org/10.7897/2277-4572.02215
Article
CAS
Google Scholar
Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, Rashid SM, Madkhali H, Ganaie MA, Khan R (2019) Neuroprotective strategies for neurological disorders by natural products: an update. Curr Neuropharmacol 17(3):247–267
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Shing M, Huen Y, Tsang SY, Xue H (2004) Neuroactive flavonoids interacting with GABAA receptor complex. Curr Drug Targets CNS Neurol Disord 4(5):575–585
Article
Google Scholar
Luk KC, Stern L, Weigele M, O’Brien RA, Spirt N (1983) Isolation and identification of “diazepam-like” compounds from bovine urine. J Nat Prod 46(6):852–861
Article
CAS
PubMed
Google Scholar
Häberlein H, Tschiersch KP, Boonen G, Hiller KO (1996) Chelidonium majus L.: components with in vitro affinity for the GABAA receptor. Positive cooperation of alkaloids. Planta Med 62(3):227–231
Article
PubMed
Google Scholar
Leung WC, Zheng H, Huen M, Law SL, Xue H (2003) Anxiolyticlike action of orally administered dl-tetrahydropalmatine in elevated plus-maze. Prog Neuro-Psychopharmacol Biol Psychiatry 27(5):775–779
Article
CAS
Google Scholar
Liao JF, Wang HH, Chen MC, Chen CC, Chen CF (1998) Benzodiazepine binding site-interactive flavones from Scutellaria baicalensis root. Planta Med 64(6):571–572
Article
CAS
PubMed
Google Scholar
Hui KM, Wang XH, Xue H (2000) Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site. Planta Med 66(1):91–93
Article
CAS
PubMed
Google Scholar
Spencer JP (2009) The impact of flavonoids on memory: physiologicaland molecular considerations. Chem Soc Rev 38(4):1152–1161
Article
CAS
PubMed
Google Scholar
Lin RD, Hou WC, Yen KY, Lee MH (2003) Inhibition of monoamineoxidase B (MAO-B) by Chinese herbal medicines. Phytomed. 10(8):650–656. https://doi.org/10.1078/0944-7113-00324
Article
CAS
Google Scholar
Huang C, Li WG, Zhang X, Xu TL, Wu D, Li Y (2012) Alpha-asarone from Acorus gramineus alleviates epilepsy by modulating A-Type GABA receptors. Neuropharmacol 65C:1–11. https://doi.org/10.1016/j.neuropharm.2012.09.001
Article
CAS
Google Scholar
Diniz TC, Silva JC, de Lima-Saraiva SRG, de Almeida Ribeiro FPR, Pacheco AGM, de Freitas RM, Quintans-Júnior LJ, de Souza JSQ, Mendes RL, da Silva Almeida JRG (2015, 2015) The role of flavonoids on oxidative stress in epilepsy. Oxidative Med Cell Longev 171756. Published online 2015 Jan 11. https://doi.org/10.1155/2015/171756
Daniëlle C, Adriana O, Gert S, Zhang Y, Annelii N, Kenn F, Vasiliki E, Ola S, Youngju K, Wim B, Wim LP, de Witte P (2017) Methylated flavonoids as anti-seizure agents: Naringenin 4′,7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem Int 112. https://doi.org/10.1016/j.neuint.2017.11.011
Phippen WB, Simon JE (1998) Anthocyanins in Basil (Ocimum basilicum L.). J Agric Food Chem 46(5):1734–1738
Article
CAS
Google Scholar
Uma DP, Ganasoundri A, Vindra B, Srinivasan KK, Unnikrishnan MK (2000) Radiation protection by the ocimum flavonoids orientin and vicenin: mechanisms of action. Radiat Res 154:455–460
Article
Google Scholar
Baliga MS, Jimmy R, Thilakch KR, Sunitha V, Bhat NR, Saldanha E, Rao S, Rao P, Arora R, Palatty PL (2013) Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer 65(Suppl 1):26–35
Article
CAS
PubMed
Google Scholar
Kumar S, Bouic PJ, Rosenkranz B (2020) In vitro assessment of the interaction potential of Ocimum basilicum (L.) extracts on CYP2B6, 3A4, and rifampicin metabolism. Front Pharmacol 11:517
Article
CAS
PubMed
PubMed Central
Google Scholar
Misra M (1998) Photosynthetic pigment content and essential oil yield of Ocimum basilicul L. during different stages of growth in the field. In: Garab G (ed) photosynthesis: mechanisms and effects. Kluwer, The Netherlands, pp 3825–3828
Chapter
Google Scholar
Misra M, Sahoo S, Devta BK (1998) Micropropagation of sweet basil (Ocimum basilicum L.). National Seminar on Aromatic Plants of India: Exploration and utilisation, Bhubaneswar, p 17
Google Scholar
Al-Maskria AY, Hanifa MA, Al-Maskarib MY, Abrahama AS, Al-sabahic JN, Al-Mantheria O (2011) Essential oil from Ocimum basilicum (Omani Basil): a desert crop. Nat Prod Commun 6(10):1487–1490. https://doi.org/10.1177/1934578X1100601020
Article
Google Scholar
Joshi RK (2014) Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc Sci Life 33(3):151–156. https://doi.org/10.4103/0257-7941.144618
Article
PubMed
PubMed Central
Google Scholar
Amal MA, Ladwani SM, Abdel Hameed ES (2017) Chemical composition of Ocimum basilicum L. essential oil from different regions in the Kingdom of Saudi Arabia by using Gas chromatography mass spectrometer. J Med Plants Stud 6(1):14–19 www.plantsjournal.com
Google Scholar
Poonkodi K (2016) Chemical composition of essential oil of Ocimum basilicuml. (BASIL) and its biological activities–an overview. J Crit Rev 3(3):56–62 http://creativecommons.org/licenses/by/4.0/
Google Scholar
Bhaskaruni R, Rao R, Sushil K, Kothari DK, Rajput RP, Patel MP, Darokar (2019) Chemical and biological diversity in fourteen selections of four Ocimum species. Nat Prod Commun 6(11):1705–1710. https://doi.org/10.1177/1934578X1100601134
Article
Google Scholar
Koutroumanidis M, Arzimanoglou A, Caraballo R, Goyal S, Kaminska A, Laoprasert P, Oguni H, Rubboli G, Tatum W, Thomas P, Trinka E, Vignatelli L, Moshé SL (2017) The role of EEG in the diagnosis and classification of the epilepsy syndromes: a tool for clinical practice by the ILAE Neurophysiology Task Force (Part 2). Epileptic Dis 19:385–437
Article
Google Scholar
Okoli CO, Ezike AC, Agwagah OC, Akah PA (2010) Anticonvulsant and anxiolytic evaluation of leaf extracts of Ocimum gratissimum, a culinary herb. Pharm Res 2(1):36–40. https://doi.org/10.4103/0974-8490.60580
Article
CAS
Google Scholar
Bahr TA, Rodriguez D, Beaumont C, Allred K (2019) The effects of various essential oils on epilepsy and acute seizure: a systematic review. Evid Based Complement Alternat Med 2019:6216745
Article
PubMed
PubMed Central
Google Scholar
Annafi OS, Umukoro S, Eduviere AT (2014) Evaluation of the anticonvulsant and anxiolytic potentials of methyl jasmonate in mice. Sci Pharm 82(3):643–654
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases.Neural. Regen Res 7(5):376–385
CAS
Google Scholar
Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochem 62(2):121–125
Article
CAS
Google Scholar
Fadel O, El K, Morandat S (2011) The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochim Biophys Acta 1808(12):2973–2980. https://doi.org/10.1016/j.bbamem.2011.08.011
Article
CAS
PubMed
Google Scholar
De Oliveira NC, Sarmento MS, Nunes EA, Porto CM, Rosa DP, Bona SR, Rodrigues G, Marroni NP, Pereire P, Picada JN, Ferraz AB, Thiesen F, Da Silva J (2012) Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food Chem Toxicol 50(5):1208–1214
Article
PubMed
CAS
Google Scholar
Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31(1-3):3–16
Article
CAS
PubMed
Google Scholar
Khamse S, Sadr SS, Roghani M, Hasanzadeh G, Mohammadian M (2015) Rosmarinic acid exerts a neuroprotective effect in the kainate rat model of temporal lobe epilepsy: Underlying mechanisms. Pharm Biol 53(12):1818–1825. https://doi.org/10.3109/13880209.2015.1010738
Article
CAS
PubMed
Google Scholar
Fonteles AA, de Souza CM, de Sauza Neves JC, Menezes AP, Santos do Carmo MR, Fernandes FD, de Araujo PR, de Andrade GM (2015) Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res 297:91–103
Article
PubMed
CAS
Google Scholar
Ghaffari H, Venkataramana M, Jalali Ghassam B, Chandra Nayaka S, Nataraju A, Geetha NP, Prakash HS (2014) Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sci 113(1-2):7–13. https://doi.org/10.1016/j.lfs.2014.07.010
Article
CAS
PubMed
Google Scholar
Nakazawa T, Ohsawa K (1998) Metabolism of rosmarinic acid in rats. J Nat Prod 61(8):993–996
Article
CAS
PubMed
Google Scholar
Baba S, Osakabe N, Natsume M, Terao J (2004) Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci 75(2):165–178
Article
CAS
PubMed
Google Scholar
Yang JH, Zhang L, Li JS, Chen LH, Zheng Q, Chen T, Chen ZP, Fu TM, Di LQ (2015) Enhanced oral bioavailability and prophylactic effects on oxidative stress and hepatic damage of an oil solution containing a rosmarinic acid–phospholipid complex. J Funct Foods 19:63–73
Article
CAS
Google Scholar
Kim IH, Yan BC, Park JH, Yeu GH, Yim Y, Ahn JH, Lee JC, Hwang IK, Cho JH, Kim YM, Lee YL, Park JH, Won MH (2013) Neuroprotection of a novel synthetic caffeic acid-syringic acid hybrid compound against experimentally induced transient cerebral ischemic damage. Planta Med 79(5):313–321
Article
CAS
PubMed
Google Scholar
Jeong CH, Jeong HR, Choi GN, Kim DO, Lee U, Heo HJ (2011) Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf. Chin Med 6:25. https://doi.org/10.1186/1749-8546-6-25
Article
PubMed
PubMed Central
Google Scholar
Anwar J, Spanevello RM, Thomé G, Stefanello N, Schmatz R, Gutierres J, Vieira J, Baldissarelli J, Carvalho FB, da Rosa MM, Rubin MA, Fiorenza A, Morsch VM, Schetinger MR (2012) Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacol Biochem Behav 103(2):386–394. https://doi.org/10.1016/j.pbb.2012.09.006
Article
CAS
PubMed
Google Scholar
Gülçin İ (2011) Antioxidant activity of eugenol: a structure-activity relationship study. J Med Food 14(9):975–985
Article
PubMed
CAS
Google Scholar
Nam H, Kim MM (2013) Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem Toxicol 55:106–112
Article
CAS
PubMed
Google Scholar
Mahapatra SK, Roy S (2014) Phytopharmacological approach of free radical scavenging and anti-oxidative potential of eugenol and Ocimum gratissimum Linn. Asian Pac J Trop Med 7(S1):S391–S397
Article
CAS
Google Scholar
Prasad SN, Muralidhara (2012) Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: Behavioral and biochemical evidence. Neurochem Res 38(2):330–345. https://doi.org/10.1007/s11064-012-0924-9
Article
CAS
PubMed
Google Scholar
Won MH, Lee JC, Kim YH, Song DK, Suh HW, Oh YS, Kim JH, Shin TK, Lee YJ, Wie MB (1998) Postischemic hypothermia induced by eugenol protects hippocampal neurons from global ischemia in gerbils. Neurosci Lett 254(2):101–104
Article
CAS
PubMed
Google Scholar
Wei H, Fiskum G, Rosenthal RE, Robert E, Perry AU, David C (1997) Global cerebral ischemia and reperfusion alters NMDA receptor binding in canine brain. Mol Chem Neuropathol 30(1-2):25–39. https://doi.org/10.1007/BF02815148
Article
CAS
PubMed
Google Scholar
Bora KS, Arora S, Shri R (2011) Role of Ocimum basilicum L. in prevention of ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice brain. J. Ethnopharmacol. 137(3):1360–1365
Article
Google Scholar
Singh V, Kahol A, Singh IP, Saraf I, Shri R (2016) Evaluation of anti-amnesic effect of extracts of selected Ocimum species using in-vitro and in-vivo models. J Ethnopharmacol 193:490–499. https://doi.org/10.1016/j.jep.2016.10.026
Article
PubMed
Google Scholar