Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of Incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
Article
PubMed
Google Scholar
Tyczynski JE, Plesko I, Aareleid T, Primic-Zakelj M, Dalmas M, Kurtinaitis J, Stengrevics A, Parkin DM (2004) Breast cancer mortality patterns and time trends in 10 new EU member states: mortality declining in young women, but still increasing in the elderly. Int J Cancer 112(6):1056–1064. https://doi.org/10.1002/ijc.20514
Article
CAS
PubMed
Google Scholar
Kalirajan R, Pandiselvi A, Gowramma B, Balachandran P (2019) In-silico design, ADMET screening, MM-GBSA binding free energy of some novel isoxazole substituted 9-anilinoacridines as HER2 inhibitors targeting breast cancer. Curr Drug Res Rev Formerly Current Drug Abuse Rev 11(2):118–128. https://doi.org/10.2174/2589977511666190912154817
Article
CAS
Google Scholar
Baselga J, Tripathy D, Mendelsohn J et al (1996) Phase II study of weekly intravenous recombinant humanized anti-p185her2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14(3):737–744. https://doi.org/10.1200/JCO.1996.14.3.737
Article
CAS
PubMed
Google Scholar
Baselga J, Cleopatra SSM (2010) A phase III evaluation of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer. Clin Breast Cancer 10(6):489–491. https://doi.org/10.3816/CBC.2010.n.065
Article
PubMed
Google Scholar
Burris HA III, Rugo HS, Vukelja SJ et al (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of H Human epidermal growth factor R Receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29(4):398–405. https://doi.org/10.1200/JCO.2010.29.5865
Article
CAS
PubMed
Google Scholar
Chang BY, Kim SA, Malla B, Kim SY (2011) The Effect of Selective Estrogen Receptor Modulators (SERMS) on the Tamoxifen resistant breast cancer cells. Toxicol Res 27(2):85–93. https://doi.org/10.5487/TR.2011.27.2.085
Article
CAS
PubMed
PubMed Central
Google Scholar
Harmey JH, Dimitriadis E, Kay E, Redmond HP, Bouchier-Hayes D (1998) Regulation of macrophage production of Vascular Endothelial Growth Factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol 5(3):271–278. https://doi.org/10.1007/BF02303785
Article
CAS
PubMed
Google Scholar
Lai L, Liu J, Zhai D et al (2012) Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2. Br J Pharmacol 165(4b):1084–1096. https://doi.org/10.1111/j.1476-5381.2011.01532.x
Article
PubMed
PubMed Central
Google Scholar
Miller KD, Trigo JM, Wheeler C et al (2005) A multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin Cancer Res 11(9):3369–3376. https://doi.org/10.1158/1078-0432.CCR-04-1923
Article
CAS
PubMed
Google Scholar
Perez EA, Romond EH, Suman VJ et al (2011) Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol 29(25):3366–3373. https://doi.org/10.1200/JCO.2011.35.0868
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki T, Hiroki K, Yamashita Y (2013) The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Bio-Med Res Int. https://doi.org/10.1155/2013/546318
Article
Google Scholar
Langelier MF, Ruhl DD, Planck JL, Kraus WL, Pascal JM (2010) The Zn3 domain of human poly (ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem 285(24):18877–18887. https://doi.org/10.1074/jbc.M110.105668
Article
CAS
PubMed
PubMed Central
Google Scholar
Lord CJ, Ashworth A (2008) Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8(4):363–369. https://doi.org/10.1016/j.coph.2008.06.016
Article
CAS
PubMed
Google Scholar
Yuan Z, Chen S, Chen C, Chen J, Chen C, Chunmei DQ, Gao YJ (2017) Design, synthesis and biological evaluation of 4-amidobenzimidazoleacridine derivatives as dual PARP and Topoinhibitors for cancer therapy. Eur J Med Chem 138:1135–1146. https://doi.org/10.1016/j.ejmech.2017.07.050
Article
CAS
PubMed
Google Scholar
Lee JM, Hays JL, Annunziata CM et al (2014) Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst 106(6):dju089. https://doi.org/10.1093/jnci/dju089
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin T, Huang G, Chi L et al (2017) Exceptionally high UBE2C expression is a unique phenomenon in basal-like type breast cancer and is regulated by BRCA1. Biomed Pharmacother 95:649–655. https://doi.org/10.1016/j.biopha.2017.08.095
Article
CAS
PubMed
Google Scholar
Ocaña A, Amir E (2009) Irreversible pan-erbb tyrosine kinase inhibitors and breast cancer: Current status and future directions. Cancer Treat Rev 35(8):685–691. https://doi.org/10.1016/j.ctrv.2009.08.001
Article
CAS
PubMed
Google Scholar
Arora A, Scholar EM (2005) Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 315(3):971–979. https://doi.org/10.1124/jpet.105.084145
Article
CAS
PubMed
Google Scholar
Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL (1997) Estrogen-induced activation of CDK4 and CDK2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem 272(16):10882–10894. https://doi.org/10.1074/jbc.272.16.10882
Article
CAS
PubMed
Google Scholar
Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301. https://doi.org/10.1038/nrc2812
Article
CAS
PubMed
PubMed Central
Google Scholar
Page P, Li-Xi Y (2010) Novel chemo radiosensitizers for cancer therapy. Anticancer Res 30:3675–3682
CAS
PubMed
Google Scholar
Bock FJ, Chang P (2016) New directions in poly(ADP-ribose) polymerase biology. The FEBS J 83:4017–4031. https://doi.org/10.1111/febs.13737
Article
CAS
Google Scholar
Bryant HE, Schultz N, Thomas HD, Parker KM et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917. https://doi.org/10.1038/nature03443
Article
CAS
PubMed
Google Scholar
Yap TA, Sandhu SK, Carden CP, De Bono JS (2011) Poly (ADP-Ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 61(1):31–49. https://doi.org/10.3322/caac.20095
Article
PubMed
Google Scholar
Scully R, Puget N (2002) BRCA1 and BRCA2 in hereditary breast cancer. Biochimie 84(1):95–102. https://doi.org/10.1016/S0300-9084(01)01359-1
Article
CAS
PubMed
Google Scholar
Curtin N (2014) PARP inhibitors for anticancer therapy. Biochem Soc Trans 42:82–88. https://doi.org/10.1042/BST20130187
Article
CAS
PubMed
Google Scholar
Nonomiya Y, Noguchi K, Katayama K, Sugimoto Y (2019) Novel pharmacological effects of poly (ADP-ribose) polymerase inhibitor rucaparib on the lactate dehydrogenase pathway. Biochem Biophys Res Comm 510(4):501–507. https://doi.org/10.1016/j.bbrc.2019.01.133
Article
CAS
PubMed
Google Scholar
Sahu B, Narota A, Naura AS (2020) Pharmacological inhibition of poly (ADP-ribose) polymerase by olaparib, prevents acute lung injury associated cognitive deficits potentially through suppression of inflammatory response. Eur J Pharmacol 877:173091. https://doi.org/10.1016/j.ejphar.2020.173091
Article
CAS
PubMed
Google Scholar
Lehtiö L, Jemth AS, Collins R, Loseva O et al (2009) Structural basis for inhibitor specificity in human poly (ADP-ribose) polymerase-3. J Med Chem 52:3108–3111. https://doi.org/10.1021/jm900052j
Article
CAS
PubMed
Google Scholar
Ramadan SK, Elrazaz EZ, Abouzid KA, El-Naggar AM (2020) Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors. RSC Adv 10(49):29475–29492
Article
CAS
PubMed
PubMed Central
Google Scholar
Murai J, Shar-yin NH, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Can Res 72(21):5588–5599. https://doi.org/10.1158/0008-5472.CAN-12-2753
Article
CAS
Google Scholar
Pommier Y, O’Connor MJ, de Bono J (2016) Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8:362ps17. https://doi.org/10.1126/scitranslmed.aaf9246
Article
CAS
PubMed
Google Scholar
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. https://doi.org/10.1038/nature03445
Article
CAS
PubMed
Google Scholar
Keung MY, Wu Y, Vadgama JV (2019) PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J Clin Med 8(4):435. https://doi.org/10.3390/jcm8040435
Article
CAS
PubMed Central
Google Scholar
Zhang K, Wang P, Xuan LN, Fu XY, Jing F, Li S, Liu YM, Chen BQ (2014) Synthesis and antitumor activities of novel hybrid molecules containing 1, 3, 4-oxadiazole and 1, 3, 4-thiadiazole bearing Schiff base moiety. Bioorganic Med Chem Lett 24(22):5154–5166. https://doi.org/10.1016/j.bmcl.2014.09.086
Article
CAS
Google Scholar
Vaidya A, Jain S, Jain P, Jain P, Tiwari N, Jain R et al (2016) Synthesis and biological activities of oxadiazole derivatives: a review. Mini Rev Med Chem 16(10):825–845. https://doi.org/10.2174/1389557516666160211120835
Article
CAS
PubMed
Google Scholar
Zarghi A, Hamedi S, Tootooni F, Amini B, Sharifi B, Faizi M, Abbas S, Abbas ST (2008) Synthesis and pharmacological evaluation of new 2-substituted-5-{2-[(2 halobenzyl)thio)phenyl}- 1,3,4-oxadiazoles as anticonvulsant agents. Sci Pharm 76(2):185–201. https://doi.org/10.3797/scipharm.0803-10
Article
CAS
Google Scholar
Aboraia AS, Abdel-Rahman HM, Mahfouz NM, EL-Gendy MA (2006) Novel 5-(2-hydroxyphenyl)-3-substituted-2, 3-dihydro-1, 3, 4-oxadiazole-2-thione derivatives: Promising anticancer agents. Bio-org Med Chem 14(4):1236–1246. https://doi.org/10.1016/j.bmc.2005.09.053PMid:16242340
Article
CAS
Google Scholar
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8
Article
CAS
PubMed
Google Scholar
Gálvez J, Polo S, Insuasty B, Gutiérrez M, Cáceres D, Alzate-Morales JH, De-la-Torre P, Quiroga J (2018) Design, facile synthesis, and evaluation of novel spiro-and pyrazolo [1, 5-c] quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies. Comput Biol Chem 74:218–229. https://doi.org/10.1016/j.compbiolchem.2018.03.001
Article
CAS
PubMed
Google Scholar
Hassan AS, Askar AA, Nossier ES, Naglah AM, Moustafa GO, Al-Omar MA (2019) Antibacterial evaluation, in silico characters and molecular docking of Schiff Bases derived from 5-aminopyrazoles. Molecules 24(17):3130. https://doi.org/10.3390/molecules24173130
Article
CAS
PubMed Central
Google Scholar
Dawicki-McKenna JM, Langelier MF et al (2015) PARP-1 activation requires local unfolding of an 013autoinhibitory domain. Mol Cell 60(5):755–768. https://doi.org/10.1016/j.molcel.2015.10
Article
CAS
PubMed
PubMed Central
Google Scholar