Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618
Article
PubMed
Google Scholar
Rao GN, Sabnam S, Pal S, Rizwan H, Thakur B, Pal A (2018) Prevalence of ocular morbidity among children aged 17 years or younger in the eastern India. Clin Ophthalmol 12:1645–1652
Article
PubMed
PubMed Central
Google Scholar
Gupta M, Gupta BP, Chauhan A, Bhardwaj A (2009) Ocular morbidity prevalence among school children in Shimla, Himachal, North India. Indian J Ophthalmol 57:133–138
Article
PubMed
PubMed Central
Google Scholar
Saxena R, Vashist P, Tandon R, Pandey RM, Bhardawaj A, Gupta V, Menon V (2017) Incidence and progression of myopia and associated factors in urban school children in Delhi: The North India Myopia Study (NIM Study). PLoS One 12:e0189774.
ElBab MF, Shawky N, AlSisi A, Akhtar M (2012) Retinopathy and risk factors in diabetic patients from Al-Madinah Al-Munawarah in the Kingdom of Saudi Arabia. Clin Ophthalmol 6:269–276
Google Scholar
Al-Maskari F, El-Sadig M (2007) Prevalence of diabetic retinopathy in the United Arab Emirates: a cross-sectional survey. BMC ophthalmol 7:11
Article
PubMed
PubMed Central
Google Scholar
Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116
Article
PubMed
Google Scholar
Kawasaki R, Yasuda M, Song SJ, Chen SJ, Jonas JB, Wang JJ, Mitchell P, Wong TY (2010) The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmol 117:921–927
Article
Google Scholar
Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395
Article
CAS
PubMed
Google Scholar
Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674
Article
CAS
PubMed
Google Scholar
Dreyfuss JL, Giordano RJ, Regatieri CV (2015) Ocular angiogenesis. J Ophthalmol 1–3.
Cabral T, Mello LGM, Lima LH, Polido J, Regatieri CV, Belfort R Jr, Mahajan VB (2017) Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous 3:31
Article
PubMed
PubMed Central
Google Scholar
Yoo SY, Kwon SM (2013) Angiogenesis and its therapeutic opportunities. Mediators Inflamm 1–11.
Halin C, Zardi L, Neri D (2001) Antibody-based targeting of angiogenesis. News Physiol Sci 16:191–194
CAS
PubMed
Google Scholar
Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harb Perspect Biol 3:1–19
Article
CAS
Google Scholar
Kvanta A (2006) Ocular angiogenesis: the role of growth factors. Acta Ophthalmol Scand 84:282–288
Article
CAS
PubMed
Google Scholar
Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93:2576–2581
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Bellingard V, Feng KT, McMaster M, Fisher SJ (2003) Human cytotrophoblasts promote endothelial survival and vascular remodeling through secretion of Ang2, PlGF, and VEGF-C. Dev Biol 263:114–125
Article
CAS
PubMed
Google Scholar
Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47:149–161
CAS
PubMed
Google Scholar
Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212
CAS
PubMed
Google Scholar
Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7:2–8
Article
CAS
PubMed
Google Scholar
Risau W (1990) Angiogenic growth factors. Prog Growth Factor Res 2:71–79
Article
CAS
PubMed
Google Scholar
Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169
Article
CAS
PubMed
Google Scholar
Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60
Article
CAS
PubMed
Google Scholar
Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 99:11205–11210
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller DL, Ortega S, Bashayan O, Basch R, Basilico C (2000) Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 20:2260–2268
Article
CAS
PubMed
PubMed Central
Google Scholar
Rundhaug JE(2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285.
Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248
Article
CAS
PubMed
Google Scholar
Holekamp NM, Bouck N, Volpert O (2002) Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol 134:220–227
Article
CAS
PubMed
Google Scholar
Aranda J, Rivera JC, Jeziorski MC, Riesgo-Escovar J, Nava G, López-Barrera F, Quiróz-Mercado H, Berger P, Martínez de la Escalera G, Clapp C (2005) Prolactins are natural inhibitors of angiogenesis in the retina. Invest Ophthalmol Vis Sci 46:2947–2953
Article
PubMed
Google Scholar
Ben-Jonathan N, Mershon JL, Allen DL, Steinmetz RW (1996) Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev 17:639–669
CAS
PubMed
Google Scholar
Triebel J, Bertsch T, Bollheimer C, Rios-Barrera D, Pearce CF, Hüfner M, Martínez de la Escalera G, Clapp C (2015) Principles of the prolactin/vasoinhibin axis. Am J Physiol Regul Integr Comp Physiol 309:R1193–R1203
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawler J (2000) The functions of thrombospondin-1 and-2. Curr Opin Cell Biol 12:634–640
Article
CAS
PubMed
Google Scholar
Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563
Article
CAS
PubMed
Google Scholar
Holmes DI, Zachary I (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 6:209
Article
PubMed
PubMed Central
Google Scholar
Savory LJ, Stacker SA, Fleming SB, Niven BE, Mercer AA (2000) Viral vascular endothelial growth factor plays a critical role in orf virus infection. J Virol 74:10699–10706
Article
CAS
PubMed
PubMed Central
Google Scholar
Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5:519–524
CAS
PubMed
Google Scholar
Rosnet O, Matteï MG, Marchetto S, Birnbaum D (1991) Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Genomics 9:380–385
Article
CAS
PubMed
Google Scholar
Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y (1995) Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 55:5687–5692
CAS
PubMed
Google Scholar
Joukov V, Kaipainen A, Jeltsch M, Pajusola K, Olofsson B, Kumar V, Eriksson U, Alitalo K (1997) Vascular endothelial growth factors VEGF-B and VEGF-C. J Cell Physiol 173:211–215
Article
CAS
PubMed
Google Scholar
Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, Bekku Y, Yagi T, Fujisawa H (1997) Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19:995–1005
Article
CAS
PubMed
Google Scholar
Adamis AP, Shima DT, Tolentino MJ, Gragoudas ES, Ferrara N, Folkman J, D’Amore PA, Miller JW (1996) Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 114:66–71
Article
CAS
PubMed
Google Scholar
Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LE (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 92:10457–10461
Article
CAS
PubMed
PubMed Central
Google Scholar
Shweiki D, Neeman M, Itin A, Keshet E (1995) Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci U S A 92:768–772
Article
CAS
PubMed
PubMed Central
Google Scholar
Siemerink MJ, Augustin AJ, Schlingemann RO (2010) Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol 46:4–20
Article
CAS
PubMed
Google Scholar
Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172-1180
Article
CAS
PubMed
Google Scholar
Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97:99–107
Article
CAS
PubMed
Google Scholar
Miyazaki H, Matsuoka H, Cooke JP, Usui M, Ueda S, Okuda S, Imaizumi T (1999) Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation 99:1141–1146
Article
CAS
PubMed
Google Scholar
Sone H, Kawakami Y, Okuda Y, Kondo S, Hanatani M, Suzuki H, Yamashita K (1996) Vascular endothelial growth factor is induced by long-term high glucose concentration and up-regulated by acute glucose deprivation in cultured bovine retinal pigmented epithelial cells. Biochem Biophys Res Commun 221:193–198
Article
CAS
PubMed
Google Scholar
Deroanne CF, Hajitou A, Calberg-Bacq CM, Nusgens BV, Lapière CM (1997) Angiogenesis by fibroblast growth factor 4 is mediated through an autocrine up-regulation of vascular endothelial growth factor expression. Cancer Res 57:5590–5597
CAS
PubMed
Google Scholar
Ciulla TA, Rosenfeld PJ (2009) Anti-vascular endothelial growth factor therapy for neovascular ocular diseases other than age-related macular degeneration. Curr Opin Ophthalmol 20:166–174
Article
PubMed
Google Scholar
Tah V, Orlans HO, Hyer J, Casswell E, Din N, Sri Shanmuganathan V, Ramskold L, Pasu S (2015) Anti-VEGF therapy and the retina: an update. J Ophthalmol 2015:627674
Zampros I, Praidou A, Brazitikos P, Ekonomidis P, Androudi S (2012) Antivascular endothelial growth factor agents for neovascular age-related macular degeneration. J Ophthalmol 2012:319728
Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, Murahashi WY, Rubio RG, Investigators BRAVO (2010) Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117:1102-1112.e1
Article
PubMed
Google Scholar
Popescu V, Pricopie S, Totir M, Iancu R, Yasyn S, Alexandrescu C (2015) Clinical use of Bevacizumab in treating refractory glaucoma. J Med Life 8:8–12
CAS
PubMed
PubMed Central
Google Scholar
Park SC, Su D, Tello C (2012) Anti-VEGF therapy for the treatment of glaucoma: a focus on ranibizumab and bevacizumab. Expert OpinBiol Ther 12:1641–1647
Article
CAS
Google Scholar
SooHoo JR, Seibold LK, Kahook MY (2014) The link between intravitreal antivascular endothelial growth factor injections and glaucoma. Curr Opin Ophthalmol 25:127–133
Article
PubMed
Google Scholar
Cardarelli WJ, Smith RA (2013) Managed care implications of age-related ocular conditions. Am J Manag Care 19:85–91
Google Scholar
Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, Browning DJ, Elman MJ, Ferris FL, Friedman SM, Melia M, Pieramici DJ, Sun JK, Beck RW (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 372:1193–1203
Article
CAS
PubMed
Google Scholar
Kumar A, Tripathy K, Chawla R (2017) Intraocular use of bevacizumab in India: an issue resolved? Natl Med J India 30:345–347
Article
PubMed
Google Scholar
Azad R, Chandra P, Gupta R (2007) The economic implications of the use of anti-vascular endothelial growth factor drugs in age-related macular degeneration. Indian J Ophthalmol 55:441–443
Iturralde D, Spaide RF, Meyerle CB, Klancnik JM, Yannuzzi LA, Fisher YL, Sorenson J, Slakter JS, Freund KB, Cooney M, Fine HF (2006) Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: a short-term study. Retina 26:279–284
Article
PubMed
Google Scholar
Shah PK, Narendran V, Tawansy KA, Raghuram A, Narendran K (2007) Intravitreal bevacizumab (Avastin) for post laser anterior segment ischemia in aggressive posterior retinopathy of prematurity. Indian J Ophthalmol 55:75–76
Article
PubMed
Google Scholar
Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28:1779–1802
Article
CAS
PubMed
Google Scholar
Kazazi-Hyseni F, Beijnen JH, Schellens JH (2010) Bevacizumab Oncologist 15:819–825
Article
CAS
PubMed
Google Scholar
Kim LA, D’Amore PA (2012) A brief history of anti-VEGF for the treatment of ocular angiogenesis. Am J Pathol 181:376–379
Article
PubMed
PubMed Central
Google Scholar
Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132
Article
CAS
PubMed
Google Scholar
Nelson MH, Dolder CR (2006) Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother 40:261–269
Article
CAS
PubMed
Google Scholar
Segovia-Mendoza M, González-González ME, Barrera D, Díaz L, García-Becerra R (2015) Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am J Cancer Res 5:2531–2561
CAS
PubMed
PubMed Central
Google Scholar
Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM (2003) SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2:471–478
CAS
PubMed
Google Scholar
Schöffski P, Dumez H, Clement P, Hoeben A, Prenen H, Wolter P, Joniau S, Roskams T, Van Poppel H (2006) Emerging role of tyrosine kinase inhibitors in the treatment of advanced renal cell cancer: a review. Ann Oncol 17:1185–1196
Article
PubMed
Google Scholar
Adnane L, Trail PA, Taylor I, Wilhelm SM (2006) Sorafenib (BAY 43–9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 407:597–612
Article
CAS
PubMed
Google Scholar
Browning DJ, Kaiser PK, Rosenfeld PJ, Stewart MW (2012) Aflibercept for age-related macular degeneration: a game-changer or quiet addition? Am J Ophthalmol 154:222–226
Article
CAS
PubMed
Google Scholar
Dejneka NS, Wan S, Bond OS, Kornbrust DJ, Reich SJ (2008) Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes. Mol Vis 14:997–1005
PubMed
PubMed Central
Google Scholar
Wei L (2005) Adenovector pigment epithelium-derived factor (AdPEDF) delivery for wet age-related macular degeneration. Retina 25:S48-49
Article
PubMed
Google Scholar
Rasmussen H, Chu KW, Campochiaro P, Gehlbach PL, Haller JA, Handa JT, Nguyen QD, Sung JU (2001) Clinical protocol: an open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther 12:2029–2032
CAS
PubMed
Google Scholar
Olly JK, Bridge H, MacLaren RE (2019) Outcome measures used in ocular gene therapy trials: a scoping review of current practice. Front Pharmacol 10:1076
Article
CAS
Google Scholar
Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Camins Espuny A, Espina M, Garcia ML, Sánchez-López E (2019) Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics 11:460
Article
CAS
PubMed Central
Google Scholar
Kumari A, Sharma PK, Garg VK, Garg G (2010) Ocular inserts: advancement in therapy of eye diseases. J Adv Pharm Technol Res 1:291–296
Article
CAS
PubMed
PubMed Central
Google Scholar
Shende PK, Godbole R (2016) Current and novel techniques in the ophthalmic drug delivery systems. Int J Pharm Sci Res 7:3557–3566
Google Scholar
Catalu CT, Istrate SL, Voinea LM, Mitulescu C, Popescu V, Radu C (2018) Ocular implants-methods of ocular reconstruction following radical surgical interventions. Rom J Ophthalmol 62:15–23
Article
PubMed
PubMed Central
Google Scholar
Chao Z, Dong C, Fang H (2017) Current Perspective on microneedles for ocular drug delivery. Saudi J Med Pharm Sci 3:772–776
Google Scholar
Thakur Singh RR, Tekko I, McAvoy K, McMillan H, Jones D, Donnelly RF (2016) Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv 14:525–537
Article
PubMed
CAS
Google Scholar
Zhang Y, Chen Y, Yu X, Qi Y, Chen Y, Liu Y, Hu Y, Li Z (2016) A flexible device for ocular iontophoretic drug delivery. Biomicrofluidics 10:011911
Sanajan A, Ahmed MG, Gowda BHJ (2021) Preparation and evaluation of in-situ gels containing hydrocortisone for the treatment of aphthous ulcer. J Oral Biol Craniofac Res 11:269–276
Article
Google Scholar
Kushwaha SK, Saxena P, Rai AK (2012) Stimuli sensitive hydrogels for ophthalmic drug delivery: a review. Int J Pharm Investig 2:54–60
Article
CAS
PubMed
PubMed Central
Google Scholar
Kouchak M (2014) In situ gelling systems for drug delivery. Jundishapur J Nat Pharm Prod 9:e20126
Choi SW, Kim J (2018) Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials (Basel) 11:1125
Article
CAS
Google Scholar
Xu J, Xue Y, Hu G, Lin T, Gou J, Yin T, He H, Zhang Y, Tang X (2018) A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release 281:97–118
Article
CAS
PubMed
Google Scholar
Fong JF, Ng YH, Ng SM (2018) Carbon dots as a new class of light emitters for biomedical diagnostics and therapeutic applications. In: Grumezescu AM (ed) Fullerens, Graphenes and Nanotubes, William Andrew Publishing
Eskiizmir G, Ermertcan AT, Yapici K (2017) Nanomaterials: promising structures for the management of oral cancer. In: Andronescu E, Grumezescu AM (ed) Nanostructures for oral medicine, Elsevier
Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martín Rodríguez E, García Solé J (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530
Lapotko D (2009) Therapy with gold nanoparticles and lasers: what really kills the cells? Nanomedicine (Lond) 4:253–256
Article
Google Scholar
Pandey A, Nikam AN, Fernandes G, Kulkarni S, Padya BS, Prassl R, Das S, Joseph A, Deshmukh PK, Patil PO, Mutalik S (2020) Black phosphorus as multifaceted advanced material nanoplatforms for potential biomedical applications. Nanomaterials (Basel) 11:13
Article
CAS
Google Scholar
Xie Z, Peng M, Lu R, Meng X, Liang W, Li Z, Qiu M, Zhang B, Nie G, Xie N, Zhang H, Prasad PN (2020) Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light Sci Appl 9:161
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu M, Singh A, Wang D, Qu J, Swihart M, Zhang H, Prasad PN (2019) Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today 25:135–155
Article
CAS
Google Scholar
Sun Z, Xie H, Tang S, Yu XF, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu PK (2015) Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew Chem Int Ed Engl 54:11526–11530
Article
CAS
PubMed
Google Scholar
Liu J, Erogbogbo F, Yong KT, Ye L, Liu J, Hu R, Chen H, Hu Y, Yang Y, Yang J, Roy I, Karker NA, Swihart MT, Prasad PN (2013) Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano 7:7303–7310
Article
CAS
PubMed
Google Scholar
Singh AD (2013) Ocular phototherapy Eye 27:190–198
CAS
PubMed
Google Scholar
Lavinsky D, Palanker D (2015) Nondamaging photothermal therapy for the retina: initial clinical experience with chronic central serous retinopathy. Retina 35:213–222
Article
CAS
PubMed
Google Scholar
Luo L, Nie C, Du P, Hongwei Z, Wei W, Zhang M, Ambati B, Sun Z (2015) An efficient near-infrared photothermal therapy agent by using Ag@Oxides nanoprisms in for uveal melanoma therapy. Investig Ophthalmol Vis Sci 56:1540
Google Scholar
Hassanzadeh P, Atyabi F, Dinarvand R (2019) The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 151:169–190
Article
PubMed
CAS
Google Scholar
Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–483
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Jones LW, Gu FX (2016) Nanotechnology and nanomaterials in ophthalmic drug delivery. In: Pathak Y, Sutariya V, Hirani A (eds) Nano-biomaterials for ophthalmic drug delivery. Springer, Cham
Behar-Cohen F (2004) Vectorisation intra-oculaire [Drug delivery to target the posterior segment of the eye]. Med Sci 20:701–706
Google Scholar
Dey S, Mitra AK (2005) Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin Drug Deliv 2:201–204
Article
CAS
PubMed
Google Scholar
Kokate A, Marasanapalle V, Jasti BR, Li X (2006) Physiological and biochemical barriers to drug delivery. In: Li X, Jasti BR (eds) Design of controlled release drug delivery systems. McGraw-Hill, New York, pp 41–73
Google Scholar
Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23:253–281
Article
CAS
PubMed
Google Scholar
Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–127
Patel RP, Joshi JR (2012) An overview on nanoemulsion: a novel approach. Int J Pharm Sci Res 3:4640
CAS
Google Scholar
Ammar HO, Salama HA, Ghorab M, Mahmoud AA (2009) Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPSPharmSciTech 10:808
CAS
Google Scholar
Shankar SJ, Gowda JBH, Akshatha RS, Metikurki B, Rehamathulla M (2020) A review on role of nanocrystals and nanosuspensions in drug delivery systems. Int J App Pharm 12:10–16
CAS
Google Scholar
Shid RL, Dhole SN, Kulkarni N, Shid SL (2013) Nanosuspension: a review. Int J Pharm Sci Rev Res 20:98–106
Google Scholar
Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J App Pharm Sci 1:228–234
Google Scholar
Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36
Article
Google Scholar
Cholkar K, Patel A, Vadlapudi AD, Mitra AK (2012) Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2:82–95
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, Mazumder B (2019) Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur J Ophthalmol 29:113–126
Article
PubMed
Google Scholar
Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151
Article
CAS
PubMed
Google Scholar
Guinedi AS, Mortada ND, Mansour S, Hathout RM (2005) Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm 306:71–82
Article
CAS
PubMed
Google Scholar
Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247
Article
PubMed
PubMed Central
CAS
Google Scholar
Yadav HK, Almokdad AA, Sumia IM, Debe MS (2019) Polymer-based nanomaterials for drug-delivery carriers. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (ed) Nanocarriers for Drug Delivery, Elsevier
Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684
Article
CAS
PubMed
Google Scholar
Mourya VK, Inamdar N, Nawale RB, Kulthe SS (2011) Polymeric micelles:general consideration and their applications. Indian J Pharm Educ Res 45:128–138
Google Scholar
Nishiyama N (2019) Polymeric micelles. In: Matsumura, Yasuhiro, Tarin, David (ed) Cancer Drug Delivery Systems Based on the Tumor Microenvironment, Springer, Tokyo.
Mandal A, Bisht R, Rupenthal ID, Mitra AK (2017) Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release 248:96–116
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanafy NAN, El-Kemary M, Leporatti S (2018) Micelles structure development as a strategy to improve smart cancer therapy. Cancers 10:238
Article
PubMed Central
CAS
Google Scholar
Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N (2017) Nanoparticles in antiviral therapy. In: Grumezescu AM (ed) Antimicrobial nanoarchitectonics, Elsevier.
Prajapati VD, Jani GK, Kapadia JR (2015) Current knowledge on biodegradable microspheres in drug delivery. Expert Opin Drug Deliv 12:1283–1299
Article
CAS
PubMed
Google Scholar
Zhang Y, Chu CC (2002) In vitro release behavior of insulin from biodegradable hybrid hydrogel networks of polysaccharide and synthetic biodegradable polyester. J Biomater Appl 16:305–325
Article
PubMed
CAS
Google Scholar
Kumara BN, Shambhu R, Prasad KS (2021) Why chitosan could be apt candidate for glaucoma drug delivery: an overview. Int J Biol Macromol 176:47–65
Article
CAS
PubMed
Google Scholar
Umeki N, Sato T, Harada M, Takeda J, Saito S, Iwao Y, Itai S (2010) Preparation and evaluation of biodegradable microspheres containing a new potent osteogenic compound and new synthetic polymers for sustained release. Int J Pharm 392:42–50
Article
CAS
PubMed
Google Scholar
Zhang M, Yang Z, Chow LL, Wang CH (2003) Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions. J Pharm Sci 92:2040–2056
Article
CAS
PubMed
Google Scholar
Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Drying Tech 23:1361–1394
Article
CAS
Google Scholar
Brown EN, Kesseler MR, Sottos NR, White SR (2003) In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20:719–730
Article
CAS
PubMed
Google Scholar
Dubey R, Shami TC, Rao KU (2009) Microencapsulation technology and applications. Def Sci J 59:82–95
CAS
Google Scholar
Patil U, Chaudhari KP, Jadhao UT, Thakare VM, Tekade BW (2014) Formulation and evaluation of Albendazole microspheres by ionotropic gelation method. J Adv Pharm Edu Res 4:114–124
CAS
Google Scholar
Zheng CH, Gao JQ, Zhang YP, Liang WQ (2004) A protein delivery system: biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres. Biochem Biophys Res Commun 323:1321–1327
Article
CAS
PubMed
Google Scholar
Wang D, Molavi O, Lutsiak ME, Elamanchili P, Kwon GS, Samuel J (2007) Poly(D, L-lactic-co-glycolic acid) microsphere delivery of adenovirus for vaccination. J Pharm Pharm Sci 10:217–230
CAS
PubMed
Google Scholar
Giunchedi P, Conte U, Chetoni P, Saettone MF (1999) Pectin microspheres as ophthalmic carriers for piroxicam: evaluation in vitro and in vivo in albino rabbits. Eur J Pharm Sci 9:1–7
Article
CAS
PubMed
Google Scholar
Burke PA, Klumb LA, Herberger JD, Nguyen XC, Harrell RA, Zordich M (2004) Poly(lactide-co-glycolide) microsphere formulations of darbepoetin alfa: spray drying is an alternative to encapsulation by spray-freeze drying. Pharm Res 21:500–506
Article
CAS
PubMed
Google Scholar
Fu YJ, Shyu SS, Su FH, Yu PC (2002) Development of biodegradable co-poly (D, L-lactic/glycolic acid) microspheres for the controlled release of 5-FU by the spray drying method. Colloids Surf B Biointerfaces 25:269–279
Article
CAS
Google Scholar
Conti B, Bucolo C, Giannavola C, Puglisi G, Giunchedi P, Conte U (1997) Biodegradable microspheres for the intravitreal administration of acyclovir: in vitro/in vivo evaluation. Eur J Pharm Sci 5:287–293
Article
CAS
Google Scholar
Liu W, Lee BS, Mieler WF, Kang-Mieler JJ (2019) Biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of bioactive aflibercept in vitro. Curr Eye Res 44:264–274
Article
CAS
PubMed
Google Scholar
Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, Banfi S, Surace EM, Sun J, Acerra C, Wright JF, Wellman J, High KA, Auricchio A, Bennett J, Simonelli F (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 120:1283–1291
Article
PubMed
Google Scholar
Tamboli V, Mishra GP, Mitrat AK (2011) Polymeric vectors for ocular gene delivery. Ther Deliv 2:523–536
Article
CAS
PubMed
Google Scholar
Mirzaeei S, Alizadeh M (2017) Design and evaluation of soluble ocular insert for controlled release of chloramphenicol. J Rep Pharm Sci 6:123–133
Google Scholar
Franca JR, Foureaux G, Fuscaldi LL, Ribeiro TG, Rodrigues LB, Bravo R, Castilho RO, Yoshida MI, Cardoso VN, Fernandes SO, Cronemberger S (2014) Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS ONE 9:95461
Article
CAS
Google Scholar
Gradinaru S, Popescu V, Leasu C, Pricopie S, Yasin S, Ciuluvica R, Ungureanu E (2015) Hydroxyapatite ocular implant and non-integrated implants in eviscerated patients. J Med Life 8:90–93
CAS
PubMed
PubMed Central
Google Scholar
Thakur RR, Tekko IA, Al-Shammari F, Ali AA, McCarthy H, Donnelly RF (2016) Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Deliv Transl Res 6:800–815
Article
CAS
PubMed
PubMed Central
Google Scholar
Prausnitz MR, Jiang J, Patel SR, Gill HS, Ghate D, McCarey BE, Geroski DH, Edelhauser HF (2007) Ocular drug delivery using microneedles. Investig Ophthalmol Vis Sci 48:3191
Google Scholar
Molokhia S, Papangkorn K, Butler C, Higuchi JW, Brar B, Ambati B, Li SK, Higuchi WI (2020) Transscleral iontophoresis for noninvasive ocular drug delivery of macromolecules. J Ocul Pharmacol Ther 36:247–256
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun S, Diao H, Zhao F, Bai J, Zhou Y, Cui H, Zhang L (2015) Extraction of iron from the rabbit anterior chamber with reverse iontophoresis. J Ophthalmol 2015:425438.
Nagai N, Minami M, Deguchi S, Otake H, Sasaki H, Yamamoto N (2020) An in situ gelling system based on methylcellulose and tranilast solid nanoparticles enhances ocular residence time and drug absorption into the cornea and conjunctiva. Front Bioeng Biotechnol 8:764
Article
PubMed
PubMed Central
Google Scholar
Barse RK, Tagalpallewar AA, Kokare CR, Sharma JP, Sharma PK (2018) Formulation and ex vivo-in vivo evaluation of pH-triggered brimonidine tartrate in situ gel for the glaucoma treatment using application of 32 factorial design. Drug Dev Ind Pharm 44:800–807
Article
CAS
PubMed
Google Scholar
Qin G, Zhu Z, Li S, McDermott AM, Cai C (2017) Development of ciprofloxacin-loaded contact lenses using fluorous chemistry. Biomaterials 124:55–64
Article
CAS
PubMed
PubMed Central
Google Scholar
Garhwal R, Shady SF, Ellis EJ, Ellis JY, Leahy CD, McCarthy SP, Crawford KS, Gaines P (2012) Sustained ocular delivery of ciprofloxacin using nanospheres and conventional contact lens materials. Investig Ophthalmol Vis Sci 53:1341–1352
Article
CAS
Google Scholar
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H (2018) Artificial intelligence in retina. Prog Retin Eye Res 67:1–29
Article
PubMed
Google Scholar
Zhang XP, Sun JG, Yao J, Shan K, Liu BH, Yao MD, Ge HM, Jiang Q, Zhao C, Yan B (2018) Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed Pharmacother 107:1056–1063
Article
CAS
PubMed
Google Scholar
Salimi A (2017) Preparation and evaluation of celecoxib nanoemulsion for ocular drug delivery. Asian J Pharm 11:543–549
Google Scholar
Yadollahi R, Vasilev K, Simovic S (2015) Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater 1:2015
Google Scholar
Jacob S, Nair AB, Shah J (2020) Emerging role of nanosuspensions in drug delivery systems. Biomater Res 24:3
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931
Article
CAS
Google Scholar
Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, BenEzra D, Behar-Cohen FF (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Investig Ophthalmol Vis Sci 44:3562–3569
Article
Google Scholar
Singh P, Verma N (2018) A review on impact of nanomicelle for ocular drug delivery system. Int J Pharm Sci Res 9:1397–1404
CAS
Google Scholar
Xu X, Sun L, Zhou L, Cheng Y, Cao F (2020) Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym 227:115356
Taha EI, El-Anazi MH, El-Bagory IM, Bayomi MA (2014) Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 22:231–239
Article
PubMed
Google Scholar
Lai S, Wei Y, Wu Q, Zhou K, Liu T, Zhang Y, Jiang N, Xiao W, Chen J, Liu Q, Yu Y (2019) Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology 17:64
Article
PubMed
PubMed Central
Google Scholar
Chaudhari PD, Desai US (2019) Formulation and evaluation of niosomal in situ gel of prednisolone sodium phosphate for ocular drug delivery. Int J App Pharm 11:97–116
Article
CAS
Google Scholar
Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, Zarrabi A (2020) Niosomal drug delivery systems for ocular disease-recent advances and future prospects. Nanomaterials 10:1191
Article
CAS
PubMed Central
Google Scholar
Lancina MG 3rd, Yang H (2017) Dendrimers for ocular drug delivery. Can J Chem 95:897–902
Article
CAS
PubMed
PubMed Central
Google Scholar
Yavuz B, BozdağPehlivan S, Ünlü N (2013) Dendrimeric systems and their applications in ocular drug delivery. Sci World J 1:2013
Google Scholar
Safwat MA, Mansour HF, Hussein AK, Abdelwahab S, Soliman GM (2020) Polymeric micelles for the ocular delivery of triamcinolone acetonide: preparation and in vivo evaluation in a rabbit ocular inflammatory model. Drug Deliv 27:1115–1124
Article
CAS
PubMed
PubMed Central
Google Scholar
Arafa MG, Girgis GNS, El-Dahan MS (2020) Chitosan-coated PLGA nanoparticles for enhanced ocular anti-inflammatory efficacy of atorvastatin calcium. Int J Nanomedicine 15:1335–1347
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Tawakol AP, Rudeen KM, Mieler WF, Kang-Mieler JJ (2020) Treatment efficacy and biocompatibility of a biodegradable aflibercept-loaded microsphere-hydrogel drug delivery system. Transl Vis Sci Technol 9:13
Article
PubMed
PubMed Central
Google Scholar
Hatamie S, Shih PJ, Chen BW, Wang I, Young TH, Yao DJ (2020) Synergic effect of novel WS2 carriers holding spherical Cobalt Ferrite @cubic Fe3O4 (WS2/s-CoFe2O4@ c-Fe3O4) nanocomposites in magnetic resonance imaging and photothermal therapy for ocular treatments and investigation of corneal endothelial cell migration. Nanomaterials 10:2555
Article
CAS
PubMed Central
Google Scholar
Levin T, Sade H, Binyamini RB, Pour M, Nachman I, Lellouche JP (2019) Tungsten disulfide-based nanocomposites for photothermal therapy. Beilstein J Nanotechnol 10:811–822
Article
CAS
PubMed
PubMed Central
Google Scholar
Comunanza V, Bussolino F (2017) Therapy for cancer: strategy of combining anti-angiogenic and target therapies. Front Cell Dev Biol 5:101
Article
PubMed
PubMed Central
Google Scholar
Sampat KM, Garg SJ (2010) Complications of intravitreal injections. Curr Opin Ophthalmol 21:178–183
Article
PubMed
Google Scholar
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O (2020) Therapeutic nanoparticles and their targeted delivery applications. Molecules 25:2193
Article
CAS
PubMed Central
Google Scholar
De Cogan F, Hill LJ, Lynch A, Morgan-Warren PJ, Lechner J, Berwick MR, Peacock AFA, Chen M, Scott RAH, Xu H, Logan A (2017) Topical delivery of anti-VEGF drugs to the ocular posterior segment using cell-penetrating peptides. Invest Ophthalmol Vis Sci 58:2578–2590
Article
PubMed
CAS
Google Scholar
Seah I, Zhao X, Lin Q, Liu Z, Su SZ, Yuen YS, Hunziker W, Lingam G, Loh XJ, Su X (2020) Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye 34:1341–1356
Article
PubMed
PubMed Central
Google Scholar
Su X, Tan MJ, Li Z, Wong M, Rajamani L, Lingam G, Loh XJ (2015) Recent progress in using biomaterials as vitreous substitutes. Biomacromol 16:3093–3102
Article
CAS
Google Scholar
Liu J, Li S, Li G, Li X, Yu C, Fu Z, Li X, Teng L, Li Y, Sun F (2019) Highly bioactive, bevacizumab-loaded, sustained-release PLGA/PCADK microspheres for intravitreal therapy in ocular diseases. Int J Pharm 563:228–236
Article
CAS
PubMed
Google Scholar
Sun JG, Jiang Q, Zhang XP, Shan K, Liu BH, Zhao C, Yan B (2019) Mesoporous silica nanoparticles as a delivery system for improving antiangiogenic therapy. Int J Nanomedicine 14:1489–1501
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Borrell MA, Venerus DC, Mieler WF, Kang-Mieler JJ (2019) Characterization of biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of ranibizumab. Transl Vis Sci Technol 8:12
Article
PubMed
PubMed Central
Google Scholar
Morigi V, Tocchio A, Bellavite Pellegrini C, Sakamoto JH, Arnone M, Tasciotti E (2012) Nanotechnology in medicine: from inception to market domination. J Drug Deliv 2012:389485
Nijhara R, Balakrishnan K (2006) Bringing nanomedicines to market: regulatory challenges, opportunities, and uncertainties. Nanomedicine 2:127–136
Article
CAS
PubMed
Google Scholar
Ye Z, Ji YL, Ma X, Wen JG, Wei W, Huang SM (2015) Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-PLGA microspheres in rabbits. Int J Ophthalmol 8:653–658
PubMed
PubMed Central
Google Scholar
Varshochian R, Riazi-Esfahani M, Jeddi-Tehrani M, Mahmoudi AR, Aghazadeh S, Mahbod M, Movassat M, Atyabi F, Sabzevari A, Dinarvand R (2015) Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J Biomed Mater Res A 103:3148–3156
Article
CAS
PubMed
Google Scholar
Lu Y, Zhou N, Huang X, Cheng JW, Li FQ, Wei RL, Cai JP (2014) Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int J Ophthalmol 7:1–7
CAS
PubMed
PubMed Central
Google Scholar
Yandrapu SK, Upadhyay AK, Petrash JM, Kompella UB (2013) Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol Pharm 10:4676–4686
Article
CAS
PubMed
Google Scholar
Mu H, Wang Y, Chu Y, Jiang Y, Hua H, Chu L, Wang K, Wang A, Liu W, Li Y, Fu F, Sun K (2018) Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv 25:1372–1383
Article
CAS
PubMed
PubMed Central
Google Scholar
Abrishami M, Zarei-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B (2009) Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 29:699–703
Article
PubMed
Google Scholar
OTX-IVT (Intravitreal depot technology for retinal drug delivery) (2019) Ocular Therapeutix. https://www.ocutx.com/research/otx-ivt/#:~:text=Ocular%20Therapeutix%20is%20currently%20developing,drugs%20to%20targeted%20ocular%20tissues. Accessed 11 Mar 2021
Xie B, Jin L, Luo Z, Yu J, Shi S, Zhang Z, Shen M, Chen H, Li X, Song Z (2015) An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. Int J Pharm 490:375–383
Article
CAS
PubMed
Google Scholar
Yu Y, Lau LC, Lo AC, Chau Y (2015) Injectable Chemically Crosslinked Hydrogel for the Controlled Release of Bevacizumab in Vitreous: A 6-Month In Vivo Study. Transl Vis Sci Technol 4:5
Article
PubMed
PubMed Central
Google Scholar
Lovett ML, Wang X, Yucel T, York L, Keirstead M, Haggerty L, Kaplan DL (2015) Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics. Eur J Pharm Biopharm 95:271–278
Article
CAS
PubMed
Google Scholar
Rauck BM, Friberg TR, Mendez MCA, Park D, Shah V, Bilonick RA, Wang Y (2014) Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci 55:469–476
Article
CAS
PubMed
PubMed Central
Google Scholar
Park D, Shah V, Rauck BM, Friberg TR, Wang Y (2013) An anti-angiogenic reverse thermal gel as a drug-delivery system for age-related wet macular degeneration. Macromol Biosci 13:464–469
Article
CAS
PubMed
PubMed Central
Google Scholar
Osswald CR, Guthrie MJ, Avila A, Valio JA Jr, Mieler WF, Kang-Mieler JJ (2017) In vivo efficacy of an injectable microsphere-hydrogel ocular drug delivery system. Curr Eye Res 42:1293–1301
Article
CAS
PubMed
Google Scholar
Drug Approvals and Databases (2020) United States Food and Drug Administration. https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases. Accessed 13 Mar 2021
Campochiaro PA, Marcus DM, Awh CC, Regillo C, Adamis AP, Bantseev V, Chiang Y, Ehrlich JS, Erickson S, Hanley WD, Horvath J, Maass KF, Singh N, Tang F, Barteselli G (2019) The port delivery system with ranibizumab for neovascular age-related macular degeneration: results from the randomized phase 2 ladder clinical trial. Ophthalmology 126:1141–1154
Article
PubMed
Google Scholar
Humayun M, Santos A, Altamirano JC, Ribeiro R, Gonzalez R, de la Rosa A, Shih J, Pang C, Jiang F, Calvillo P, Huculak J, Zimmerman J, Caffey S (2014) Implantable micropump for drug delivery in patients with diabetic macular edema. Transl Vis Sci Technol 3:5
Article
PubMed
PubMed Central
Google Scholar
Shen HH, Chan EC, Lee JH, Bee YS, Lin TW, Dusting GJ, Liu GS (2015) Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine (Lond) 10:2093–2107
Article
CAS
Google Scholar
Pooja D, Kadari A, Kulhari H, Sistla R (2018) Lipid-based nanomedicines: current clinical status and future perspectives. In: Grumezescu AM (ed) Lipid Nanocarriers for Drug Targeting, William Andrew Publishing
Grumezescu AM (ed) (2018) Design of nanostructures for versatile therapeutic applications. William Andrew Publishing
Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, Lobo GP, Valapala M, Kerur N, Passaglia CL, Mohapatra SS (2021) Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials 11:173
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeevanandam J, Chan YS, Danquah MK (2016) Nano-formulations of drugs: recent developments, impact and challenges. Biochimie 128–129:99–112
Article
PubMed
CAS
Google Scholar
Barenholz Y, Amselem S, Goren D, Cohen R, Gelvan D, Samuni A, Golden EB, Gabizon A (1993) Stability of liposomal doxorubicin formulations: problems and prospects. Med Res Rev 13:449–491
Article
CAS
PubMed
Google Scholar
Barenholz Y (2012) Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134
Article
CAS
PubMed
Google Scholar
Barenholz Y (2007) Amphipathic weak base loading into preformed liposomes having a transmembrane ammonium ion gradient: From the bench to approved DOXIL. In: Gregory G (ed) Liposome Technology, 3rd edn, CRC Press
Gabizon AA, Barenholz Y (2010) Method for drug loading in liposomes. US Patent 12/802,545, 30 Sep 2010
Perry JL, Herlihy KP, Napier ME, Desimone JM (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44:990–998
Article
CAS
PubMed
PubMed Central
Google Scholar
Acharya G, Shin CS, McDermott M, Mishra H, Park H, Kwon IC, Park K (2010) The hydrogel template method for fabrication of homogeneous nano/microparticles. J Control Release 141:314–319
Article
CAS
PubMed
Google Scholar