Bai L, Li X, He L, Zheng Y, Lu H, Li J, Zhong L, Tong R, Jiang Z, Shi JL (2019) Antidiabetic potential of flavonoids from traditional Chinese medicine: a review. Am J Chin Med 47(5):933–957. https://doi.org/10.1142/S0192415X1950049
Article
CAS
Google Scholar
Zhu Y, Zhao J, Luo L, Gao Y, Bao H, Li P, Zhang H (2021) Research progress of indole compounds with potential antidiabetic activity. Eur J Med Chem 223:113665. https://doi.org/10.1016/j.ejmech.2021.113665
Article
CAS
Google Scholar
Moller DE, Flier JS (1991) Insulin resistance-mechanisms, syndromes, and implications. N Engl J Med 325:938–948
Article
CAS
Google Scholar
Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX (2016) Anti-diabetic polysaccharides from natural sources: a review. Carbohydr Polym 148:86–97
Article
Google Scholar
Grover JK, Yadav S, Vats V (2021) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81(1):81–100. https://doi.org/10.1016/s0378-8741(02)00059-4
Article
Google Scholar
Mishra GP, Sharma R, Jain M, Bandyopadhyay D (2021) Syntheses, biological evaluation of some novel substituted benzoic acid derivatives bearing hydrazone as linker. Res Chem Intermed 47:5061–5078. https://doi.org/10.1007/s11164-021-04555-y
Article
CAS
Google Scholar
Mohammed A, Ibrahim MA, Tajuddeen N, Aliyu AB, Isah MB (2020) Antidiabetic potential of anthraquinones: a review. Phytother Res 34(3):486–504. https://doi.org/10.1002/ptr.6544
Article
CAS
Google Scholar
Chen Q, Zhu L, Tang Y, Zhao Z, Yi T, Chen H (2017) Preparation-related structural diversity and medical potential in the treatment of diabetes mellitus with ginseng pectins. Ann N Y Acad Sci 1401(1):75–89. https://doi.org/10.1111/nyas.13424
Article
CAS
Google Scholar
Salsali A, Nathan M (2006) A review of types 1 and 2 diabetes mellitus and their treatment with insulin. Am J Ther 13(4):349–361. https://doi.org/10.1097/00045391-200607000-00012
Article
Google Scholar
Lukmanji Z (2003) Role of nutrition in the management of diabetes mellitus. Forum Nutr 56:170–174
CAS
Google Scholar
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C (2020) Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 21(17):6275. https://doi.org/10.3390/ijms21176275
Article
CAS
Google Scholar
Tripathy D, Chavez AO (2010) Defects in insulin secretion and action in the pathogenesis of type 2 diabetes mellitus. Curr Diab Rep 10(3):184–191. https://doi.org/10.1007/s11892-010-0115-5
Article
CAS
Google Scholar
Salehi B, Ata A, Kumar AVN, Sharopov F, Ramirez-Alarcon K, Ruiz-Ortega A, Abdulmajid Ayatollahi SA, Fokou TVP, Kobarfard F, Zakaria AZ, Iriti M, Taheri Y, Martorell M, Sureda A, Setzer NW, Durazzo A, Lucarini M, Santini A, Capasso R, Ostrander AE, Rahaman AU, Choudhary MI, Chao WC, Rad JS (2019) Antidiabetic potential of medicinal plants and their active components. Biomolecules 9(10):551
Article
Google Scholar
Khan MF, Rawat AK, Khatoon S, Hussain MK, Mishra A, Negi DS (2018) In vitro and in vivo antidiabetic effect of extracts of Melia azedarach, Zanthoxylum alatum, and Tanacetum nubigenum. Integr Med Res 7(2):176–183. https://doi.org/10.1016/j.imr.2018.03.004
Article
Google Scholar
Wang W, Xu J, Fang H, Li Z, Li M (2020) Advances and challenges in medicinal plant breeding. Plant Sci 298:110573. https://doi.org/10.1016/j.plantsci.2020.110573
Article
CAS
Google Scholar
Singh R, Rajasree PH, Sankar C (2012) Screening for anti diabetic activity of the ethanolic extract of Barleria Cristata seeds. Int J Pharm Life Sci 3(10):2044–2047
Google Scholar
Vijayanand S, Wesely EG (2011) Evaluation of antidiabetic activity of Melia azadirach on alloxan induced diabetic rats. Int J Curr Pharm Res 3:37–40
CAS
Google Scholar
Ahmad, Avanapu SR, Shaik R, Ibrahim M (2012) Phytochemical studies and antioxidant activity of Melia azedarach linn leaves by DPPH scavenging Assay. Int J Pharma Appl 3(1):271–276
Google Scholar
Nain P, Saini V, Sharma S, Nain J (2012) Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol 142(1):65–71. https://doi.org/10.1016/j.jep.2012.04.014
Article
CAS
Google Scholar
Palanisamy S, Sudha S, Prakash S (2014) Antidiabetic activity of aqueous extract of Padina boergesenii in streptozotocin-induced diabetic rats. Int J Pharm Sci 6:418–422. https://doi.org/10.20959/wipr20178-9153
Article
Google Scholar
Dhanabal SP, Kokate CK, Ramanathan M, Kumar EP, Suresh B (2006) Hypoglycaemic activity of Peterocarpus marsupium Roxb. Phytother Res 20(1):3–8. https://doi.org/10.1002/ptr.1819
Article
Google Scholar
Manickam M, Ramanathan M, Jahromi MA, Chansouria JP, Ray AB (1997) Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60(6):609–610. https://doi.org/10.1021/np9607013
Article
CAS
Google Scholar
Mahmoud MF, El Ashry FE, El Maraghy NN, Fahmy A (2017) Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm Biol 55(1):758–765. https://doi.org/10.1080/13880209.2016.1275026
Article
CAS
Google Scholar
Baset M, Ali T, Elshamy H, El SA, Sami D, Tawfik BM (2020) Anti-diabetic effects of fenugreek (Trigonella foenum-graecum): a comparison between oral and intraperitoneal administration—an animal study. Int J Funct Nutr. https://doi.org/10.3892/ijfn.2020.2
Article
Google Scholar
Moqbel F, Naik P, Habeeb N, Subramaniyam S (2011) Antidiabetic properties of Hibiscus rosa sinensis L. leaf extract fractions on nonobese diabetic (NOD) mouse. Indian J Exp Biol 49(1):24–29
Google Scholar
Gorelick J, Rosenberg R, Smotrich A, Hanus L, Bernestein N (2015) Hypoglycaemic activity of withanolodes and elicited Withania somnifera. Phytochemistry 116:283–289. https://doi.org/10.1016/j.phytochem.2015.02.029
Article
CAS
Google Scholar
Jena S (2018) Anti-diabetic effects of Withania somnifera root and leaf extracts on streptozotocin induced diabetic rats. J Cell Tissue Res 13(1):3597–3601
Google Scholar
Jayant S, Srivastava N (2016) Effect of Ocimum sanctum against alloxan induced diabetes and biochemical alteration in rats. Integr Obes Diabetes. https://doi.org/10.16761/IOD.1000162
Article
Google Scholar
Joladarashi D, Chilkunda ND, Salimath PV (2014) Glucose uptake-stimulatory activity of Tinospora cordifolia stem extracts in Ehrlich ascites tumor cell model system. J Food Sci Technol 51(1):178–182. https://doi.org/10.1007/s13197-011-0480-3
Article
Google Scholar
Kinkar B, Patil K (2015) Antidiabetic activity of Tinospora cordifolia (fam: menispermaceae) in alloxan treated albino rats. Appl Sci Res 1(5):316–319
CAS
Google Scholar
Khan F, Sarker M, Ming LC, Mohamed IN, Zhao C, Sheikh BY, Tsong HF, Rashid MA (2019) Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front Pharmacol 10:1223. https://doi.org/10.3389/fphar.2019.01223
Article
CAS
Google Scholar
El-Shafey A, El-Ezabi M, Selim M, Ouda H, Ibrahim D (2013) Effect of Gymnema sylvestre R. Br. leaves extract on certain physiological parameters of diabetic rats. J King Saud Univ Sci 25:135–141. https://doi.org/10.1016/j.jksus.2012.11.001
Article
Google Scholar
Maroo J, Ghosh A, Mathur R, Vasu VT, Gupta S (2003) Antidiabetic efficacy of Enicostemma littorale methanol extract in alloxan-induced diabetic rats. Pharm Biol 41(5):388–391. https://doi.org/10.1076/phbi.41.5.388.15943
Article
Google Scholar
Bisht S, Sisodia SS (2011) Assessment of antidiabetic potential of Cinnamomum tamala leaves extract in streptozotocin induced diabetic rats. Indian J Pharmacol 43(5):582–585. https://doi.org/10.4103/0253-7613.84977
Article
Google Scholar
Ozougwu J (2011) Anti-diabetic effects of Allium cepa (ONIONS) aqueous extracts on alloxan-induced diabetic rattus novergicus. Pharmacologyonline 1:270–281
Google Scholar
Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN (2011) Antidiabetic properties of Azardiracta indica and Bougainvillea spectabilis: in vivo studies in murine diabetes model. Evid Based Complement Alternat Med. https://doi.org/10.1093/ecam/nep033
Article
Google Scholar
Ngozika OF, Nnachetam UV, Ndidi OC (2020) Phytochemical and antibacterial activities of Anacardium occidentale fruits extracts (cashew) on two drug resistant bacteria. Int J Health Sci 5(2):81–87
Google Scholar
Jaiswal YS, Tatke PA, Gabhe SY, Vaidya AB (2016) Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. J Tradit Complement Med 7(4):421–427. https://doi.org/10.1016/j.jtcme.2016.11.007
Article
Google Scholar
Sahai V, Kumar V (2020) Anti-diabetic, hepatoprotective and antioxidant potential of Brassica oleracea sprouts. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bacb.2020.101623
Article
Google Scholar
Jana K, Bera T, Ghosh D (2015) Antidiabetic effects of Eugenia jambolana in the streptozotocin-induced diabetic male albino rat. Biomark Genom Med 7(3):116–124. https://doi.org/10.1016/j.bgm.2015.08.001
Article
CAS
Google Scholar
Surana SJ, Gokhale SB, Jadhav RB, Sawant RL, Wadekar JB (2008) Antihyperglycemic activity of various fractions of Cassia auriculata Linn. in alloxan diabetic. Indian J Pharm Sci 70(2):227–229. https://doi.org/10.4103/0250-474X.41461
Article
CAS
Google Scholar
Olatunde A, Luka CD, Tijjani H, Obidola SM, Joel E (2014) Anti-diabetic activity of aqueous extract of Curcuma longa (Linn.) rhizome in normal and alloxan-induced diabetic rats. Researcher 6:58–65
Google Scholar
Den Hartogh DJ, Gabriel A, Tsiani E (2020) Antidiabetic properties of Curcumin I: evidence from in vitro studies. Nutrients 12(1):118. https://doi.org/10.3390/nu12010118
Article
CAS
Google Scholar
Aritajat S, Wutteerapo S, Saenphet K (2004) Anti-diabetic effect of Thunbergia laurifolia Linn. aqueous extract. Southeast Asian J Trop Med Public Health 35:53–58
Google Scholar
Hegazy GA, Alnoury AM, Gad HG (2013) The role of Acacia Arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 34(7):727–733
Google Scholar
Manandhar B, Paude KR, Sharma B, Karki R (2018) Phytochemical profile and pharmacological activity of Aegle marmelos Linn. J Integr Med 16(3):153–163. https://doi.org/10.1016/j.joim.2018.04.007
Article
Google Scholar
Ansari P, Afroz N, Jalil S, Azad SB, Mustakim MG, Anwar S, Haque SM, Hossain SM, Tony RR, Hannan JM (2017) Anti-hyperglycemic activity of Aegle marmelos (L.) corr. is partly mediated by increased insulin secretion, α-amylase inhibition, and retardation of glucose absorption. J Pediatr Endocrinol Metab 30(1):37–47. https://doi.org/10.1515/jpem-2016-0160
Article
Google Scholar
Gray AM, Flatt PR (1998) Actions of the traditional anti-diabetic plant, Agrimony eupatoria (agrimony): effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. Br J Nutr 80(1):109–114. https://doi.org/10.1017/s0007114598001834
Article
CAS
Google Scholar
Eidi A, Eidi M, Esmaeili E (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13(9–10):624–629. https://doi.org/10.1016/j.phymed.2005.09.010
Article
CAS
Google Scholar
Rajasekaran S, Sivagnanam K, Ravi K, Subramanian S (2004) Hypoglycemic effect of Aloe vera gel on streptozotocin-induced diabetes in experimental rats. J Med Food 7(1):61–66. https://doi.org/10.1089/109662004322984725
Article
CAS
Google Scholar
Sanchez M, Gonzalez-Burgos E, Iglesias I, Gomez-Serranillos MP (2020) Pharmacological update properties of aloe vera and its major active constituents. Molecules 25(6):1324. https://doi.org/10.3390/molecules25061324
Article
CAS
Google Scholar
Sonowal A, Mahatma A, Kumar MS (2015) Evaluation of antidiabetic potential of methanolic extract of Benincasahispida in streptozotocin induced diabetic rats. Int J Pharm Sci Res 6(8):3334–3343. https://doi.org/10.13040/IJPSR.0975-8232.6(8).3334-43
Article
Google Scholar
Snafi AE (2017) The pharmacological importance of Benincasa hispida: a review. J Pharm Boil 5(4):240–253
Google Scholar
Dubey NK, Kumar S, Shachi K, Dubey U (2020) Anti-diabetic and haematinic effects of beet root juice (Beta vulgaris L.) in alloxan induced type-1 diabetic albino rats. J Diabetes Res Ther. https://doi.org/10.16966/2380-5544.150
Article
Google Scholar
Mirmiran P, Houshialsadat Z, Gaeini Z, Bahadoran Z, Azizi F (2020) Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr Metab. https://doi.org/10.1186/s12986-019-0421-0
Article
Google Scholar
Kannur DM, Hukkeri VI, Akki KS (2006) Antidiabetic activity of Caesalpinia bonducella seed extracts in rats. Fitoterapia 77(7–8):546–549. https://doi.org/10.1016/j.fitote.2006.06.013
Article
CAS
Google Scholar
Ghauri AO, Ahmad S, Rehman T (2020) In vitro and in vivo anti-diabetic activity of Citrullus colocynthis pulpy flesh with seeds hydro-ethanolic extract. J Complement Integr Med. https://doi.org/10.1515/jcim-2018-0228
Article
Google Scholar
Koyagura N, Kumar V, Shanmugam C (2021) Anti-diabetic and hypolipidemic effect of Coccinia Indica in glucocorticoid induced insulin resistance. Biomed Pharmacol J 14:133–140. https://doi.org/10.13005/bpj/2107
Article
CAS
Google Scholar
Gray AM, Flatt PR (1998) Antihyperglycemic actions of Eucalyptus globulus (Eucalyptus) are associated with pancreatic and extra-pancreatic effects in mice. J Nutr 128(12):2319–2323. https://doi.org/10.1093/jn/128.12.2319
Article
CAS
Google Scholar
Singh RK, Mehta S, Jaiswal D, Rai PK, Watal G (2009) Antidiabetic effect of Ficus bengalensis aerial roots in experimental animals. J Ethnopharmacol 123(1):110–114. https://doi.org/10.1016/j.jep.2009.02.017
Article
Google Scholar
Venkatesh S, Thilagavathi J, Shyam SD (2008) Anti-diabetic activity of flowers of Hibiscus rosa-sinensis. Fitoterapia 79(2):79–81. https://doi.org/10.1016/j.fitote.2007.06.015
Article
CAS
Google Scholar
Al-Snafi A (2018) Chemical constituents, pharmacological effects and therapeutic importance of Hibiscus rosa-sinensis. IOSR J Pharm 8(7):101–119
CAS
Google Scholar
Panda V, Sonkamble M (2012) Phytochemical constituents and pharmacological activities of Ipomoea batatas (Lam). Int J Res Pharmacol Pharmacother 2(1):25–34
Google Scholar
Ogunrinola OO, Fajana OO, Olaitan SN, Adu OB, Akinola MO (2015) Anti-diabetic activity of Ipomoea batatas leaves extract: effects on hepatic enzymes in alloxan-induced diabetic rats. Res J Med Plant 9(5):227–233. https://doi.org/10.3923/rjmp.2015.227.233
Article
CAS
Google Scholar
Mishra SB, Vijayakumjar M, Ojha SK, Verma A (2010) Antidiabetic effect of Jatropha curcas L. leaves extract in normal and alloxan-induced diabetic rats. Int J Pharm Sci 2(1):482–487
Google Scholar
Saleem M, Tanvir M, Akhtar MF, Iqbal M, Saleem A (2019) Antidiabetic potential of Mangifera indica L. cv. Anwar Ratol leaves: medicinal application of food wastes. Medicina (Kaunas) 55(7):353. https://doi.org/10.3390/medicina55070353
Article
Google Scholar
Ahn E, Lee J, Jeon YH, Choi SW, Kim E (2017) Anti-diabetic effects of mulberry (Morus alba L.) branches and oxyresveratrol in streptozotocin-induced diabetic mice. Food Sci Biotechnol 26(6):1693–1702. https://doi.org/10.1007/s10068-017-0223-y
Article
CAS
Google Scholar
Chan EW, Lye PY, Wong SK (2016) Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med 14(1):17–30. https://doi.org/10.3724/SP.J.1009.2016.00017
Article
CAS
Google Scholar
Majekodunmi SO, Oyagbemi AA, Umukoro S, Odeku OA (2011) Evaluation of the anti-diabetic properties of Mucuna pruriens seed extract. Asian Pac J Trop Med 4(8):632–636. https://doi.org/10.1016/S1995-7645(11)60161-2
Article
Google Scholar
Yadav M, Upadhyay P, Purohit P, Pandey B, Shah H (2017) Phytochemistry and pharmacological activity of Mucuna pruriens: a review. Int J Green Pharm 11(02):69–77. https://doi.org/10.22377/ijgp.v11i02.916
Article
CAS
Google Scholar
Gharib E, Montasser Kouhsari S (2019) Study of the antidiabetic activity of Punica granatum L. fruits aqueous extract on the alloxan-diabetic wistar rats. Iran J Pharm Res 18(1):358–368
CAS
Google Scholar
Ahmed MF, Kazim SM, Ghori SS, Mehjabeen SS, Ahmed SR, Ali SM, Ibrahim M (2010) Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Int J Endocrinol. https://doi.org/10.1155/2010/841090
Article
Google Scholar
Soren G, Sarita M, Prathyusha T (2016) Antidiabetic activity of Actinidia deliciosa fruit in alloxan induced diabetic rats. Pharma Innov 5(9):31–34
CAS
Google Scholar
Shirwaikar A, Rajendran K, Kumar CD, Bodla R (2004) Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin—nicotinamide type 2 diabetic rats. J Ethnopharmacol 91(1):171–175. https://doi.org/10.1016/j.jep.2003.12.017
Article
Google Scholar
Sabu MC, Smitha K, Kuttan R (2002) Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 83(1–2):109–116. https://doi.org/10.1016/s0378-8741(02)00217-9
Article
CAS
Google Scholar
Nisha M, Vinod B, Christudas S (2018) Evaluation of Boerhavia erecta L. for potential antidiabetic and antihyperlipidemic activities in streptozotocin-induced diabetic Wistar rats. Future J Pharm Sci 4:150–155. https://doi.org/10.1016/j.fjps.2017.12.001
Article
Google Scholar
Ekowati N, Yuniati N, Hernayanti H, Ratnaningtyas N (2018) Antidiabetic potentials of button mushroom (Agaricus bisporus) on alloxan-induced diabetic rats. Biosaintifika J Biol Biol Educ 10:655–662. https://doi.org/10.15294/biosaintifika.v10i3.17126
Article
Google Scholar
Ali MA, Wahed MI, Khatune NA, Rahman B, Barman RK, Islam MR (2015) Antidiabetic and antioxidant activities of ethanolic extract of Semecarpus anacardium (Linn.) bark. BMC Complement Altern Med 15:138. https://doi.org/10.1186/s12906-015-0662-z
Article
CAS
Google Scholar
Fred-JA KA (2009) Antidiabetic activity of Spondias mombin extract in NIDDM rats. Pharm Biol 47:215–218. https://doi.org/10.1080/13880200802462493
Article
CAS
Google Scholar
Sameh S, Al-sayed E, Labib RM, Singab AN (2018) Genus spondias : a phytochemical and pharmacological review. Hindawi. https://doi.org/10.1155/2018/5382904
Article
Google Scholar
Shahwar D, Ullaha S, Ahmad M, Ullah S, Ahmad N, Khan M (2012) Hypoglycemic activity of Ruellia tuberosa Linn. (Acanthaceae) in normal and alloxan-induced diabetic rabbits. Iran J Pharm Sci 7(2):107–115
Google Scholar
Kumar A, Pathak M, Chaudhary RP, Verma V, Singh L (2022) Pharmacognostical studies and quality control parameters of Sidarhombifolia. IJBPAS 11(2):662–672
Google Scholar
Nawel M, Dib M, Allali H, Boufeldja T (2011) Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 1(6):468–471. https://doi.org/10.1016/S2221-1691(11)60102-0
Article
Google Scholar
El Barky A, Hussein S, Alm-Eldeen A, Hafez A, Mohamed T (2017) Saponins and their potential role in diabetes mellitus. Diabetes Manag 7:148–158
Google Scholar
Philpott DJ, Butzner JD, Meddings JB (1992) Regulation of intestinal glucose transport. Can J Physiol Pharmacol 70(9):1201–1207. https://doi.org/10.1139/y92-167
Article
CAS
Google Scholar
Kumari M, Jain S (2012) Tannins: an antinutrient with positive effect to manage diabetes. Res J Recent Sci 1(12):70–73
CAS
Google Scholar
Kim MJ, Ryu GR, Chung JS, Sim SS, Min DS, Rhie DJ, Yoon SH, Hahn SJ, Kim MS, Jo YH (2003) Protective effects of epicatechin against the toxic effects of streptozotocin on rat pancreatic islets: in vivo and in vitro. Pancreas 26(3):292–299. https://doi.org/10.1097/00006676-200304000-00014
Article
CAS
Google Scholar
Kumar D, Ghosh R, Pal B (2013) α-Glucosidase inhibitory terpenoids from Potentilla fulgens and their quantitative estimation by validated HPLC method. J Funct Foods 5(3):1135–1141. https://doi.org/10.1016/j.jff.2013.03.010
Article
CAS
Google Scholar
Mbaze LM, Poumale HM, Wansi JD, Lado JA, Khan SN, Iqbal M, Ngadjui BT, Laatsch H (2007) alpha-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii(Rutaceae). Phytochemistry 68(5):591595. https://doi.org/10.1016/j.phytochem.2006.12.015
Article
CAS
Google Scholar
Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V (2009) Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chem Biol Interact 179(2–3):329–334. https://doi.org/10.1016/j.cbi.2008.10.017
Article
CAS
Google Scholar
Prasad S, Kalra N, Shukla Y (2007) Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration in Swiss albino mice. Mol Nutr Food Res 51(3):352–359. https://doi.org/10.1002/mnfr.200600113
Article
CAS
Google Scholar
Panigrahy SK, Bhatt R, Kumar A (2021) Targeting type II diabetes with plant terpenes: the new and promising antidiabetic therapeutics. Biologia 76:241–254. https://doi.org/10.2478/s11756-020-00575-y
Article
Google Scholar
Samarghandian S, Borji A, Delkhosh MB, Samini F (2013) Safranal treatment improves hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. J Pharm Pharm Sci 16(2):352–362. https://doi.org/10.18433/j3zs3q
Article
Google Scholar
Naik SR, Barbosa Filho JM, Dhuley JN, Deshmukh V (1991) Probable mechanism of hypoglycemic activity of bassic acid, a natural product isolated from Bumelia sartorum. J Ethnopharmacol 33(1–2):37–44. https://doi.org/10.1016/0378-8741(91)90158-a
Article
CAS
Google Scholar
Wang HY, Kan WC, Cheng TJ, Yu SH, Chang LH, Chuu JJ (2014) Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantiabetween type 1 and type 2 diabetic mice. Food Chem Toxicol 69:347–356. https://doi.org/10.1016/j.fct.2014.04.008
Article
CAS
Google Scholar
Tan MJ, Ye JM, Turner N, Hohnen-Behrens C, Ke CQ, Tang CP, Chen T, Weiss HC, Gesing ER, Rowland A, James DE, Ye Y (2008) Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 5(3):263–273. https://doi.org/10.1016/j.chembiol.2008.01.013
Article
CAS
Google Scholar
Tahira S, Hussain F (2014) Antidiabetic evaluation of Momordica charantia L. fruit extracts. West Indian Med J63(4):294–299. https://doi.org/10.7727/wimj.2013.180
Article
Google Scholar
Morikawa T, Kishi A, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2003) Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J Nat Prod 66(9):1191–1196. https://doi.org/10.1021/np0301543
Article
CAS
Google Scholar
Kishi A, Morikawa T, Matsuda H, Yoshikawa M (2003) Structures of new friedelane- and norfriedelane-type triterpenes and polyacylatedeudesmane-type sesquiterpene from Salacia chinensis Linn. (S. prinoides DC. Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull 51(9):1051–1055. https://doi.org/10.1248/cpb.51.105
Article
CAS
Google Scholar
Zaharudin N, Staerk D, Dragsted LO (2019) Inhibition of α-glucosidase activity by selected edible seaweeds and fucoxanthin. Food Chem 270:481–486. https://doi.org/10.1016/j.foodchem.2018.07.142
Article
CAS
Google Scholar
Adhikari B (2021) Roles of alkaloids from medicinal plants in the management of diabetes mellitus. J Chem. https://doi.org/10.1155/2021/2691525
Article
Google Scholar
Oates PJ (2008) Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 9(1):14–36. https://doi.org/10.2174/138945008783431781
Article
CAS
Google Scholar
Guasch L, Ojeda MJ, Gonzalez-Abuin N, Sala E, Cereto-Massague A, Mulero M, Valls C, Pinent M, Ardevol A, Garcia-Vallve S, Pujadas G (2012) Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): virtual screening and activity assays. PLoS ONE 7(9):e44971. https://doi.org/10.1371/journal.pone.0044971
Article
CAS
Google Scholar
Seino Y, Fukushima M, Yabe D (2010) GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig 1(1–2):8–23. https://doi.org/10.1111/j.2040-1124.2010.00022.x
Article
CAS
Google Scholar
Kim W, Egan JM (2008) The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60(4):470–512. https://doi.org/10.1124/pr.108.000604
Article
CAS
Google Scholar
Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah SC, Mustafa MR, Awan K (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules (Basel, Switzerland) 18(8):9770–9784. https://doi.org/10.3390/molecules18089770
Article
CAS
Google Scholar
Yen FS, Qin CS, Shi XS, Ying PJ, Le HY, Darmarajan T, Gunasekaran B, Salvamani S (2021) Hypoglycemic effects of plant flavonoids: a review. Evid Based Complement Alternat Med 2021:2057333
Google Scholar
Kapoor R, Kakkar P (2012) Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes. PLoS ONE 7(8):e41663. https://doi.org/10.1371/journal.pone.0041663
Article
CAS
Google Scholar