Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm Marcos. Nat Rev Cancer 9:153–166. https://doi.org/10.1038/nrc2602
Article
CAS
PubMed
Google Scholar
Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology 25:85–101. https://doi.org/10.1152/physiol.00045.2009
Article
CAS
PubMed
Google Scholar
Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. An Venez Nutr 7:1016–1036. https://doi.org/10.1017/CHO9781139028387.011
Article
CAS
Google Scholar
Portis E, Acquadro A, Comino C et al (2005) Genetic structure of island populations of wild cardoon [Cynara cardunculus L. var. sylvestris (Lamk) Fiori] detected by AFLPs and SSRs. Plant Sci 169:199–210. https://doi.org/10.1016/j.plantsci.2005.03.014
Article
CAS
Google Scholar
Gominho J, Curt MD, Lourenço A et al (2018) Cynara cardunculus L. as a biomass and multi-purpose crop: a review of 30 years of research. Biomass and Bioenergy 109:257–275. https://doi.org/10.1016/j.biombioe.2018.01.001
Article
CAS
Google Scholar
Ceccarelli N, Curadi M, Picciarelli P et al (2010) Globe artichoke as a functional food. Med J Nutrition Metab 3:197–201. https://doi.org/10.1007/s12349-010-0021-z
Article
Google Scholar
Karasin N, Tolan V, Hasimi N, Demirci O (2019) Investigation of genotoxic, antimicrobial and antioxidant activities of leaf and flower extracts of Cynara syriacaBoiss. J Agric Sci 25:346-353.
Biel W (2019) Proximate composition, minerals and antioxidant activity of artichoke leaf extracts
Google Scholar
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Netherlands Hear J 100:57–70. https://doi.org/10.1007/BF03091804
Article
CAS
Google Scholar
Wu S, Wu M, Zhang C et al (2014) Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci Hum Wellness 3:110–116. https://doi.org/10.1016/j.fshw.2014.11.002
Article
Google Scholar
Petropoulos SA, Pereira C, Ntatsi G et al (2018) Nutritional value and chemical composition of Greek artichoke genotypes. Food Chem 267:296–302. https://doi.org/10.1016/j.foodchem.2017.01.159
Article
CAS
PubMed
Google Scholar
Capacity A (2019) Phenolic composition of artichoke waste and its antioxidant capacity on differentiated Caco-2 cells
Google Scholar
Petropoulos S, Fernandes Â, Pereira C et al (2019) Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds. 289:404–412. https://doi.org/10.1016/j.foodchem.2019.03.066
Yang M, Ma Y, Wang Z et al (2020) Phenolic constituents, antioxidant and cytoprotective activities of crude extract and fractions from cultivated artichoke inflorescence. Ind Crops Prod 143:111433. https://doi.org/10.1016/j.indcrop.2019.05.082
Article
CAS
Google Scholar
Wang HC, Brumaghim JL (2011) Polyphenol compounds as antioxidants for disease prevention: reactive oxygen species scavenging, enzyme regulation, and metal chelation mechanisms in E. coli and human cells. ACS Symp Ser 1083:99–175. https://doi.org/10.1021/bk-2011-1083.ch005
Article
CAS
Google Scholar
Gump F (2006) Breast cancer treatment. J Am Coll Surg 206:1240. https://doi.org/10.1016/j.jamcollsurg.2008.01.029
Article
Google Scholar
Yang XR, Chang-Claude J, Goode EL et al (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the breast cancer association consortium studies. J Natl Cancer Inst 103:250–263. https://doi.org/10.1093/jnci/djq526
Article
PubMed
Google Scholar
Anderson WF, Chu KC, Chang S, Sherman ME (2004) Comparison of age-specific incidence rate patterns for different histopathologic types of breast carcinoma. Cancer Epidemiol Biomarkers Prev 13:1128–1135
PubMed
Google Scholar
Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374. https://doi.org/10.1158/1078-0432.CCR-04-0220
Article
PubMed
Google Scholar
Demicheli R, Bonadonna G, Greco M, et al (2006) Comment to Anderson WF, Jatoi I, Devesa SS: Distinct breast cancer incidence and prognostic patterns in the NCI’s SEER Program: suggesting a possible link between etiology and outcome. Breast Cancer Res Treat 90:127-137, 2005 [2]. Breast Cancer Res Treat 97:341–343 . doi: https://doi.org/10.1007/s10549-005-9128-1
Vígh S, Zsvér-Vadas Z, Pribac C et al (2016) Artichoke (Cynara scolymus L.) extracts are showing concentration-dependent hormetic and cytotoxic effects on breast cancer cell lines. Stud Univ Vasile Goldis Arad. Ser Stiint Vietii 26:423–433
Google Scholar
Mileo AM, Di Venere D, Linsalata V et al (2012) Artichoke polyphenols induce apoptosis and decrease the invasive potential of the human breast cancer cell line MDA-MB231. J Cell Physiol 227:3301–3309. https://doi.org/10.1002/jcp.24029
Article
CAS
PubMed
Google Scholar
Tunissiolli NM, Castanhole-Nunes MMU, Biselli-Chicote PM et al (2017) Hepatocellular carcinoma: a comprehensive review of biomarkers, Clinical Aspects, and Therapy. Asian Pac J Cancer Prev 18:863–872. https://doi.org/10.22034/APJCP.2017.18.4.863
Article
PubMed
PubMed Central
Google Scholar
Waller LP, Deshpande V, Pyrsopoulos N (2015) Hepatocellular carcinoma: a comprehensive review. World J Hepatol 7:2648–2663. https://doi.org/10.4254/wjh.v7.i26.2648
Article
PubMed
PubMed Central
Google Scholar
Kew MC (1998) Hepatitis viruses and hepatocellular carcinoma. Cancer Inflamm Mech Chem Biol Clin Asp 149:257–262. https://doi.org/10.1002/9781118826621.ch13
Article
CAS
Google Scholar
Block TM, Mehta AS, Fimmel CJ, Jordan R (2003) Molecular viral oncology of hepatocellular carcinoma. Oncogene 22:5093–5107. https://doi.org/10.1038/sj.onc.1206557
Article
CAS
PubMed
Google Scholar
Hamid AS, Tesfamariam SG, Zhang Y, Zhang ZG (2013) Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention (Review). Oncol Lett 5:1087–1092. https://doi.org/10.3892/ol.2013.1169
Article
CAS
PubMed
PubMed Central
Google Scholar
El AM, Hussein R, Abdel A et al (2018) Artichoke edible parts are hepatoprotective as commercial leaf preparation. Rev Bras Farmacogn 28:165–178. https://doi.org/10.1016/j.bjp.2018.01.002
Article
CAS
Google Scholar
Al-Radadi NS (2018) Artichoke (Cynara scolymus L.) mediated rapid analysis of silver nanoparticles and their utilisation on the cancer cell treatments. doi: https://doi.org/10.1166/jctn.2018.7317
Tang X, Wei R, Deng A, Lei T (2017) Protective effects of ethanolic extracts from artichoke, an edible herbal medicine, against acute alcohol-induced liver injury in mice. https://doi.org/10.3390/nu9091000
Miccadei S, Di Venere D, Cardinali A et al (2008) Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr Cancer 60:276–283. https://doi.org/10.1080/01635580801891583
Article
CAS
PubMed
Google Scholar
Gaafar AA, Salama ZA, El Baz FK (2013) Antioxidant and antiproliferative effects on human liver HePG2 epithelial cells from artichoke (Cynara scolymus L.) By-Products. J Nat Sci Res www 3:2225–2921. https://doi.org/10.1017/s0016672305007573
Article
Google Scholar
Tariq K, Ghias K (2016) Colorectal cancer carcinogenesis: a review of mechanisms of carcinogenesis. Cancer Biol Med 13:120–135. https://doi.org/10.28092/j.issn.2095-3941.2015.0103
Article
CAS
PubMed
PubMed Central
Google Scholar
Fearon EF, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767
Article
CAS
PubMed
Google Scholar
Wyman R (1977) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. SMPTE J 86:486–487. https://doi.org/10.1038/ng1834
Article
CAS
Google Scholar
Markowitz SD, Bertagnolli MM (2009) Molecular basis of colorectal cancer. N Engl J Med 361:1–19
Article
Google Scholar
Simsek EN, Uysal T (2013) In vitro investigation of cytotoxic and apoptotic effects of Cynara L. species in colorectal cancer cells. Asian Pacific J Cancer Prev 14:6791–6795. https://doi.org/10.7314/APJCP.2013.14.11.6791
Article
Google Scholar
Polychronakis I, Dounias G, Makropoulos V et al (2013) Work-related leukemia: a systematic review. J Occup Med Toxicol 8:1–16. https://doi.org/10.1186/1745-6673-8-14
Article
Google Scholar
Muthiah K, Suja S (2017) Growth inhibitory effect of ethyl acetate—soluble fraction of Cynara cardunculus l. in leukemia cells involves cell cycle arrest, cytochrome c release and activation of caspases. Transform Bus Econ 16:85–99. https://doi.org/10.1002/ptr
Article
Google Scholar
Carbone M, Ly BH, Dodson RF et al (2012) Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol 227:44–58. https://doi.org/10.1002/jcp.22724
Article
CAS
PubMed
PubMed Central
Google Scholar
Pulito C, Mori F, Sacconi A, et al (2015) Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget 6:18134–18150. doi: https://doi.org/10.18632/oncotarget.4017
Kusirisin W, Srichairatanakool S, Lerttrakarnnon P et al (2009) Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Med Chem 5:139–147
Article
CAS
PubMed
Google Scholar
Obrenovich ME, Nair NG, Beyaz A et al (2010) The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 13:631–643. https://doi.org/10.1089/rej.2010.1043
Article
CAS
PubMed
Google Scholar
Ksouri R, Megdiche W, Falleh H et al (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol 331:865–873. https://doi.org/10.1016/j.crvi.2008.07.024
Article
CAS
PubMed
Google Scholar
Petropoulos SA, Pereira C, Barros L (2017) Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. 2022–2029. doi: https://doi.org/10.1039/c7fo00356k
Andreassi MG (2008) DNA damage, vascular senescence and atherosclerosis. J Mol Med (Berl) 86:1033–1043. https://doi.org/10.1007/s00109-008-0358-7
Article
CAS
Google Scholar
Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674:36–44. https://doi.org/10.1016/j.mrgentox.2008.09.017
Article
CAS
PubMed
Google Scholar
Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16:77–84
Article
CAS
PubMed
Google Scholar
Kowluru RA, Kanwar M (2007) Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab (Lond) 4:1–8. https://doi.org/10.1186/1743-7075-4-8
Article
CAS
Google Scholar
Koren E, Kohen R, Ginsburg I (2010) Polyphenols enhance total oxidant-scavenging capacities of human blood by binding to red blood cells. Exp Biol Med 235:689–699. https://doi.org/10.1258/ebm.2010.009370
Article
CAS
Google Scholar
Smirnova GV, Samoylova ZY, Muzyka NG, Oktyabrsky ON (2009) Influence of polyphenols on Escherichia coli resistance to oxidative stress. Free Radic Biol Med 46:759–768
Article
CAS
PubMed
Google Scholar
Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104. https://doi.org/10.1007/s11010-010-0563-x
Article
CAS
PubMed
Google Scholar
Ramprasath VR, Jones PJH (2010) Anti-atherogenic effects of resveratrol. Eur J Clin Nutr 64:660–668. https://doi.org/10.1038/ejcn.2010.77
Article
CAS
PubMed
Google Scholar
Okawa M, Kinjo J, Nohara T, Ono M (2001) DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull 24:1202–1205
Article
CAS
PubMed
Google Scholar
Yanagimoto K, Ochi H, Lee K-G, Shibamoto T (2004) Antioxidative activities of fractions obtained from brewed coffee. J Agric Food Chem 52:592–596. https://doi.org/10.1021/jf030317t
Article
CAS
PubMed
Google Scholar
Salekzamani S (2019) The antioxidant activity of artichoke (Cynara scolymus): a systematic review and meta-analysis of animal studies. 55–71. doi: https://doi.org/10.1002/ptr.6213
Elgarawany GE, Abdou AG, Taie DM (2020) Hepatoprotective effect of artichoke leaf extracts in comparison with silymarin on acetaminophen-induced hepatotoxicity in mice. J Immunoass Immunochem 41:84–96. https://doi.org/10.1080/15321819.2019.1692029
Article
CAS
Google Scholar
Rezazadeh K, Rahmati M, Mohammadnejad L (2018) Effects of artichoke leaf extract supplementation on metabolic parameters in women with metabolic syndrome: influence of TCF7L2-rs7903146 and FTO-rs9939609 polymorphisms. Phyther Res:84–93. https://doi.org/10.1002/ptr.5951
Rezazadeh K, Rezazadeh F, Ebrahimi-mameghani M (2018) European Journal of Integrative Medicine The effect of artichoke leaf extract supplementation on lipid and CETP response in metabolic syndrome with respect to Taq 1B CETP polymorphism: a randomized placebo-controlled clinical trial. Eur J Integr Med 17:112–118. https://doi.org/10.1016/j.eujim.2017.12.008
Article
Google Scholar
Rezazadeh K, Asghari-jafarabadi M (2019) Advances in Integrative Medicine. The interaction of FTO-rs9939609 polymorphism with artichoke leaf extract effects on cardiometabolic risk factors in hypertriglyceridemia: a randomized clinical trial. Biochem Pharmacol 6:104–109. https://doi.org/10.1016/j.aimed.2018.08.006
Article
Google Scholar
Yuan X, Gao M, Xiao H et al (2012) Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem 133:10–14. https://doi.org/10.1016/j.foodchem.2011.09.071
Article
CAS
Google Scholar
Di Venere D, Linsalata V, Pace B et al (2005) Polyphenol and inulin content in a collection of artichoke. Acta Hortic 681:453–460. https://doi.org/10.17660/ActaHortic.2005.681.63
Article
Google Scholar
Sisto A, Luongo D, Treppiccione L et al (2016) Effect of Lactobacillus paracasei culture filtrates and artichoke polyphenols on cytokine production by dendritic cells. Nutrients 8. https://doi.org/10.3390/nu8100635
Mohamed Abdel Magied M, EL DHS, Mohamed Zaki S, EL MSR (2016) Artichoke (Cynara scolymus L.) leaves and heads extracts as hypoglycemic and hypocholesterolemic in rats. J Food Nutr Res 4:60–68. https://doi.org/10.12691/jfnr-4-1-10
Article
CAS
Google Scholar
Yuan X, Yang Q (2017) Simultaneous quantitative determination of 11 sesquiterpene lactones in Jerusalem artichoke (Helianthus tuberosus L.) leaves by ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci 40:1457–1464. https://doi.org/10.1002/jssc.201601135
Article
CAS
PubMed
Google Scholar
Ko H, Bae J, Kim M et al (2019) Industrial crops & products microbial production of difructose anhydride III from Jerusalem artichoke tuber powder by recombinant yeast Saccharomyces cerevisiae and Kluyveromyces marxianus. Ind Crop Prod 135:99–106. https://doi.org/10.1016/j.indcrop.2019.04.026
Article
CAS
Google Scholar
Lavecchia R, Maffei G, Paccassoni F et al (2019) Artichoke waste as a source of phenolic antioxidants and bioenergy. Waste and Biomass Valorization 10:2975–2984. https://doi.org/10.1007/s12649-018-0305-y
Article
CAS
Google Scholar
Capotorto I, Innamorato V, Cefola M et al (2020) Postharvest biology and technology high CO2 short-term treatment to preserve quality and volatiles profile of fresh-cut artichokes during cold storage. Postharvest Biol Technol 160:111056. https://doi.org/10.1016/j.postharvbio.2019.111056
Article
CAS
Google Scholar
Essid I (2020) Use of pomegranate peel and artichoke leaf extracts to improve the quality of marinated sardine (Sardinella aurita) fillets. J Food Sci Technol 57:713–722. https://doi.org/10.1007/s13197-019-04104-x
Article
CAS
PubMed
Google Scholar
Bueno-Gavilá E, Abellán A, Bermejo MS et al (2020) Characterization of proteolytic activity of artichoke (Cynara scolymus L.) flower extracts on bovine casein to obtain bioactive peptides. Animals 10:914. https://doi.org/10.3390/ani10050914
dos Santos LD, Garbin de Almeida M, Teixeira C et al (2018) Biochemical and physiological parameters in rats fed with high-fat diet: the protective effect of chronic treatment with purple grape juice (Bordo variety). Beverages 4:100. https://doi.org/10.3390/beverages4040100
Article
CAS
Google Scholar
Jacociunas LV, Dihl RR, Lehmann M et al (2014) Effects of artichoke (Cynara scolymus) leaf and bloom head extracts on chemically induced DNA lesions in Drosophila melanogaster. Genet Mol Biol 37:93–104. https://doi.org/10.1590/S1415-47572014000100015
Article
Google Scholar
orn SB, Nuchadomrong S, Jogloy S et al (2015) Preparation of inulin powder from Jerusalem artichoke (Helianthus tuberosus L.) tuber. Plant Foods Hum Nutr 70:221–226. https://doi.org/10.1007/s11130-015-0480-y
Article
CAS
Google Scholar
Abou-arab AA, Talaat HA, Abu-salem FM (2011) Physico-chemical properties of inulin produced from Jerusalem artichoke tubers on bench and pilot plant scale. 5:1297–1309
Li H, Zhu H, Qiao J et al (2012) Optimization of the main liming process for inulin crude extract from Jerusalem artichoke tubers. Front Chem Sci Eng 6:348–355. https://doi.org/10.1007/s11705-012-1295-0
Article
CAS
Google Scholar
Baldini M, Danuso F, Turi M, Vannozzi GP (2004) Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers. Ind Crops Prod 19:25–40. https://doi.org/10.1016/S0926-6690(03)00078-5
Article
CAS
Google Scholar
Terkmane N, Krea M, Moulai-Mostefa N (2016) Optimisation of inulin extraction from globe artichoke (Cynara cardunculus L. subsp. Scolymus (L.) Hegi.) by electromagnetic induction heating process. Int J Food Sci Technol 51:1997–2008. https://doi.org/10.1111/ijfs.13167
Article
CAS
Google Scholar
Ruiz-aceituno L, García-sarrió MJ, Alonso-rodriguez B et al (2016) Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chem 196:1156–1162. https://doi.org/10.1016/j.foodchem.2015.10.046
Article
CAS
PubMed
Google Scholar
Fratianni F, Pepe R, Nazzaro F (2014) Polyphenol composition, antioxidant, antimicrobial and quorum quenching activity of the “Carciofo di Montoro” (Cynara cardunculus var. scolymus ) Global artichoke of the Campania Region, Southern Italy. Food Nutr Sci 5:2053–2062. https://doi.org/10.4236/fns.2014.521217
Article
CAS
Google Scholar
Spring O (1991) Sesquiterpene lactones from Helianthus tuberosus. Phytochemistry 30:519–522. https://doi.org/10.1016/0031-9422(91)83718-Z
Article
CAS
Google Scholar
Taha HS, Abd El-Kawy AM, Fathalla MAEK (2012) A new approach for achievement of inulin accumulation in suspension cultures of Jerusalem artichoke (Helianthus tuberosus) using biotic elicitors. J Genet Eng Biotechnol 10:33–38. https://doi.org/10.1016/j.jgeb.2012.02.002
Article
CAS
Google Scholar
Maraldi T (2013) Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev 2013: . doi: https://doi.org/10.1155/2013/271602
Tan AC, Konczak I, Sze DMY, Ramzan I (2011) Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer 63:495–505. https://doi.org/10.1080/01635581.2011.538953
Article
CAS
PubMed
Google Scholar
Mileo AM (2016) Miccadei S (2016) Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxid Med Cell Longev. https://doi.org/10.1155/2016/6475624
Kubatka P, Kapinová A, Kello M et al (2016) Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer. Eur J Nutr 55:955–965. https://doi.org/10.1007/s00394-015-0910-5
Article
CAS
PubMed
Google Scholar
Ren W, Qiao Z, Wang H et al (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534. https://doi.org/10.1002/med.10033
Article
CAS
PubMed
Google Scholar
Jeanmonod DJ, Rebecca SK et al (2018) We are IntechOpen, the world’s leading publisher of open access books built by scientists, for scientists top 1% control of a proportional hydraulic system. Intech open:287–303. https://doi.org/10.5772/32009
Belkaid A, Currie JC, Desgagnés J, Annabi B (2006) The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression. Cancer Cell Int 6:1–12. https://doi.org/10.1186/1475-2867-6-7
Article
CAS
Google Scholar
Brglez Mojzer E, Knez Hrnčič M, Škerget M et al (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21. https://doi.org/10.3390/molecules21070901
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5:93. https://doi.org/10.3390/medicines5030093
Article
CAS
PubMed Central
Google Scholar
Yan Y, Li J, Han J et al (2015) Chlorogenic acid enhances the effects of 5-fluorouracil in human hepatocellular carcinoma cells through the inhibition of extracellular signal-regulated kinases. Anticancer Drugs 26:540–546. https://doi.org/10.1097/CAD.0000000000000218
Article
CAS
PubMed
PubMed Central
Google Scholar
Losada-Echeberría M, Herranz-López M, Micol V, Barrajón-Catalán E (2017) Polyphenols as promising drugs against main breast cancer signatures. Antioxidants 6:88. https://doi.org/10.1016/j.engfailanal.2013.05.012
Article
PubMed Central
Google Scholar
Moon A (2017) Anti-cancer therapy: chlorogenic acid, gallic acid and ellagic acid in synergism. IOSR J Pharm Biol Sci 12:48–52. https://doi.org/10.9790/3008-1203064852
Article
Google Scholar
Chowdhury AR, Sharma S, Mandal S et al (2002) Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem J 366:653–661. https://doi.org/10.1042/bj20020098
Article
CAS
PubMed
PubMed Central
Google Scholar
Mileo AM, Di Venere D, Abbruzzese C, Miccadei S (2015) Long term exposure to polyphenols of artichoke (Cynara scolymus L.) exerts induction of senescence driven growth arrest in the MDA-MB231 human breast cancer cell line. Oxid Med Cell Longev 1–11 . doi: https://doi.org/10.1155/2015/363827
Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49. https://doi.org/10.1006/excr.2000.4838
Article
CAS
PubMed
Google Scholar
ODIN L, TORNBLOM N (1959) Studies on the chemical composition of glomeruli isolated from human kidneys with Kimmelstiel-Wilson lesions. Acta Soc Med Ups 64:313–321. https://doi.org/10.1093/carcin/21.3.485
Article
CAS
PubMed
Google Scholar
Hengartner MO (2000) The biochemistry of apoptosis Michael. 407:770–776. https://doi.org/10.1038/35037710
Leppa S, Bohmann D (1999) Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. 18:6158–6162
Davis RJ (2000) Signal Transduction by the JNK group of MAP kinases. Cell 103:239–252. https://doi.org/10.1016/S0092-8674(00)00116-1
Article
CAS
PubMed
Google Scholar
Debatin K (1999) The role of CD95 system in chemotherapy. 2:85–90
Mayo MW, Baldwin AS (2000) The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta-Rev Cancer 1470:55–62. https://doi.org/10.1016/S0304-419X(00)00002-0
Article
Google Scholar
Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074. https://doi.org/10.1038/sj.cdd.4400601
Article
CAS
PubMed
Google Scholar
Degen WGJ, Pruijn GJM, Raats JMH, Van Venrooij WJ (2000) Caspase-dependent cleavage of nucleic acids. Cell Death Differ 7:616–627. https://doi.org/10.1038/sj.cdd.4400672
Article
CAS
PubMed
Google Scholar
Los M, Wesselborg S, Schulze-Osthoff K (1999) The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 10:629–639. https://doi.org/10.1016/S1074-7613(00)80062-X
Article
CAS
PubMed
Google Scholar
Utz PJ, Anderson P (2000) Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules. Cell Death Differ 7:589–602. https://doi.org/10.1038/sj.cdd.4400696
Article
CAS
PubMed
Google Scholar
Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424. https://doi.org/10.1146/annurev.biochem.68.1.383
Article
CAS
PubMed
Google Scholar
Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256:58–66. https://doi.org/10.1006/excr.2000.4840
Article
CAS
PubMed
Google Scholar
Schulze-Osthoff K, Ferrari D, Los M et al (1998) Apoptosis signaling by death receptors. Eur J Biochem 254:439–459. https://doi.org/10.1046/j.1432-1327.1998.2540439.x
Article
CAS
PubMed
Google Scholar
Krammer PH (2000) the immune system B cells. Nature 407:789–795
Article
CAS
PubMed
Google Scholar
de Louwa. J., de Vente J, Steinbusch HP HW., et al (2000) Articulo especial medicina mitocondrial muerte celular y/o apoptosis. Cell 102:124–133 . doi: https://doi.org/10.1016/S0896-6273(00)80282-2
Du C, Fang M, Li Y et al (2000) SMAC_IAP.pdf. 102:33–42. https://doi.org/10.1016/S0092-8674(00)00008-8
Suzuki Y, Imai Y, Nakayama H et al (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621. https://doi.org/10.1016/S1097-2765(01)00341-0
Article
CAS
PubMed
Google Scholar
Jean-Claude M, Douglas RG (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67
Google Scholar
Kroemer G (2001) B709 mitochondrial control of cell death. ScientificWorldJournal 1:1–2. https://doi.org/10.1100/tsw.2001.167
Article
Google Scholar
Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. JNCI J Natl Cancer Inst 92:1042–1053. https://doi.org/10.1093/jnci/92.13.1042
Article
CAS
PubMed
Google Scholar
Bratton SB, MacFarlane M, Cain K, Cohen GM (2000) Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res 256:27–33. https://doi.org/10.1006/excr.2000.4835
Article
CAS
PubMed
Google Scholar
Roy S, Nicholson DW (2000) Cross-talk in cell death signaling. J Exp Med 192:F21–F26. https://doi.org/10.1084/jem.192.8.F21
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirad AH, Bahkali AH, Khiyami MA et al (2013) Antimicrobial activity of marine microorganisms isolated from the coast of the Arabian Gulf. J Pure Appl Microbiol 7:1159–1164. https://doi.org/10.1007/s00262-003-0474-8
Article
Google Scholar
Chaitanya GV, Alexander JS, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:1–11. https://doi.org/10.1186/1478-811X-8-31
Article
CAS
Google Scholar
Tewari M, Quan LT, O’Rourke K et al (1995) Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809. https://doi.org/10.1016/0092-8674(95)90541-3
Article
CAS
PubMed
Google Scholar
Kaufmann SH, Desnoyers S, Ottaviano Y et al (1993) Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Recherche 53:3976–3985. https://doi.org/10.1074/jbc.274.33.22932
Article
CAS
Google Scholar
Kristiansen S, Nielsen D, Sölétormos G (2014) Methylated DNA for monitoring tumor growth and regression: how do we get there? Crit Rev Clin Lab Sci 51:149–159. https://doi.org/10.3109/10408363.2014.893279
Article
CAS
PubMed
Google Scholar
Alshatwi AA (2010) Catechin hydrate suppresses MCF-7 proliferation through TP53/caspase-mediated apoptosis. J Exp Clin Cancer Res 29:167. https://doi.org/10.1186/1756-9966-29-167
Article
CAS
PubMed
PubMed Central
Google Scholar
Rudolfova P, Hanusova V, Skalova L et al (2014) Effect of selected catechins on doxorubicin antiproliferative efficacy and hepatotoxicity in vitro. Acta Pharm 64:199–209. https://doi.org/10.2478/acph-20140018
Article
CAS
PubMed
Google Scholar
Khiewkamrop P, Phunsomboon P, Richert L, Pekthong D (2018) Epistructured catechins , EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int:1–13. https://doi.org/10.1186/s12935-018-0539-6
Terzİ YK, Kaya ÖÖ, İşerİ ÖD et al (2015) Epigallocatechin 3-gallate applications on HT-29 and MCF-7 cell lines and evaluation of tumor suppressor gene methylation. 698–704. https://doi.org/10.3906/biy-1412-82
AIWEN Z, YAQ C, LQIN Z, JGUO F (2017) Myricetin induces apoptosis and enhances chemosensitivity in ovarian cancer cells:4974–4978. https://doi.org/10.3892/ol.2017.6031
Seydi E, Rasekh HR, Salimi A et al (2016) Myricetin selectively induces apoptosis on cancerous hepatocytes by directly targeting their mitochondria. 249–258. https://doi.org/10.1111/bcpt.12572
Razak S, Afsar T, Ullah A, et al (2018) Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/β-catenin signaling pathway. 1–18
Zhou W, Liu Z, Wang M, et al (2019) Taxifolin inhibits the development of scar cell carcinoma by inducing apoptosis , cell cycle arrest , and suppression of PI3K/AKT/mTOR pathway. 24:853–858
Hashemzaei M, Far AD, Yari A, et al (2017) Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. 819–828 . doi: https://doi.org/10.3892/or.2017.5766
Kumar A, Manjula M (2015) Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep 42:1407–1417. https://doi.org/10.1007/s11033-015-3921-7
Article
CAS
Google Scholar
Jaouad ZF, Angeles A, Martín J et al (2019) Anti-carcinogenic effects of the flavonoid luteolin. Sci Rep:1–15. https://doi.org/10.1038/s41598-019-47903-0
Physiology C (2018) Cyanidin curtails renal cell carcinoma tumorigenesis. 400037:2517–2531. https://doi.org/10.1159/000489658
Su S, Yeh T, Lei H (2000) The potential of soybean foods as a chemoprevention approach for human urinary tract cancer 1. 6:230–236
Mojic M, Ajdz V, Spasojevic I, Bulatovic M (2013) Membrane fluidity, invasiveness and dynamic phenotype of metastatic prostate cancer cells after treatment with soy isoflavones. 307–314. https://doi.org/10.1007/s00232-013-9531-1
Han B, Li W, Jiang G, et al (2015) Effects of daidzein in regards to cytotoxicity in vitro, apoptosis, reactive oxygen species level, cell cycle arrest and the expression of caspase and Bcl-2 family proteins. 1115–1120 . doi: https://doi.org/10.3892/or.2015.4133
Zhang H, Hu J, Fu R, et al (2018) Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3K γ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. 1–13. doi: https://doi.org/10.1038/s41598-018-29308-7
Subhasitanont P, Chokchaichamnankit D, Chiablaem K (2017) Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells. 4361–4371. https://doi.org/10.3892/ol.2017.6705
Singh MP, Cho HJ, Kim J, et al (2019) Morin hydrate reverses cisplatin resistance by impairing PARP1/HMGB1-dependent autophagy in hepatocellular carcinoma. 1–16
Jaouad ZF, Angeles A, Martín J, et al (2017) Demethylating and anti-hepatocarcinogenic potential of hesperidin, a natural polyphenol of Citrus juices. 1653–1662 . doi: https://doi.org/10.1002/mc.22621
Febriansah R, Sarmoko S, Putri DDP, Nurulita NA (2014, 1691) Hesperidin as a preventive resistance agent in MCF–7 breast cancer cells line resistance to doxorubicin. https://doi.org/10.1016/S2221-1691(14)60236-7
Du GYU, He SWEI, Zhang LU, et al (2018) Hesperidin exhibits in vitro and in vivo antitumor effects in human osteosarcoma MG-63 cells and xenograft mice models via inhibition of cell migration and invasion, cell cycle arrest and induction of mitochondrial-mediated apoptosis GUANG-YU. 6299–6306 . doi: https://doi.org/10.3892/ol.2018.9439
Bartoszewski R, Hering A, Marszałł M et al (2014) Mangiferin has an additive effect on the apoptotic properties of hesperidin in Cyclopia sp. Tea Extracts. 9. https://doi.org/10.1371/journal.pone.0092128