Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB (2005) Diabetes increases the risk of hepatocellular carcinoma in the United States: a population-based case control study. Gut 54:533–539
Article
CAS
PubMed
PubMed Central
Google Scholar
Vecchia CA, Negri E, Decarli A, Franceschi S (1997) Diabetes mellitus and the risk of primary liver cancer. Int J Cancer 73:204–207
Article
PubMed
Google Scholar
Yuan JM, Govindarajan S, Arakawa K, Yu MC (2004) Synergism of alcohol, diabetes, and viral hepatitis on the risk of hepatocellular carcinoma in blacks and whites in the U.S. Cancer 101:1009–1017
Article
PubMed
Google Scholar
Jimenez CG, Garcia-Martinez JM, Chocarro-Calvo A, De la Vieja A (2014) A new link between diabetes and cancer: enhanced WNT/b-catenin signaling by high glucose. J Mol Endo 52:R51–R66
Article
CAS
Google Scholar
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA et al (2010) Diabetes and cancer: a consensus report. CA Cancer J Clin 60:207–221
Article
PubMed
Google Scholar
Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855
Article
CAS
PubMed
Google Scholar
Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548
Article
CAS
PubMed
PubMed Central
Google Scholar
Li CI, Chen HJ, Lai HC, Liu CS, Lin WY, Li TC et al (2015) Hyperglycemia and chronic liver diseases on risk of hepatocellular carcinoma in Chinese patients with type 2 diabetes-National cohort of Taiwan Diabetes Study. Int J Cancer 136:2668–2679
Article
CAS
PubMed
Google Scholar
Li W, Saud SM, Young MR, Chen G, Hua B (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6:7365–7378
Article
PubMed
PubMed Central
Google Scholar
Shackelford DB, Shaw RJ (2009) The LKB1-AMPKpathway: metabolism and growth control in tumor suppression. Nat Rev Cancer 9:563–575
Article
CAS
PubMed
PubMed Central
Google Scholar
Mihaylova MM, Shaw RJ (2011) The AMPK signaling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023
Article
CAS
PubMed
Google Scholar
Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation-AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574:63–71
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M et al (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Bio 9:218–224
Article
CAS
Google Scholar
Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274
Article
CAS
PubMed
PubMed Central
Google Scholar
Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501
Article
CAS
PubMed
Google Scholar
Zhou Q, Lui VWY, Yeo W (2011) Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol 7:1149–1167
Article
CAS
PubMed
Google Scholar
Zhang H, Gao C, Fang L, Zhao HC, Yao SK (2013) Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: a meta-analysis. Scand J Gastroenterol 48:78–87
Article
CAS
PubMed
Google Scholar
DePeralta DK, Wei L, Ghoshal S, Schmidt B, Lauwers GY, Lanuti M et al (2016) Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer 122:1216–1227
Article
CAS
PubMed
Google Scholar
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174
Article
CAS
PubMed
PubMed Central
Google Scholar
Saraei P, Asadi I, Kakar MA, Moradi-Kor N (2019) The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag Res 11:3295–3313
Article
CAS
PubMed
PubMed Central
Google Scholar
Das BK, Swamy AHMV, Koti BC, Gadad PC (2019) Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon 5:e01585
Article
PubMed
PubMed Central
Google Scholar
Chellian R, Pandy V, Mohamed Z (2017) Pharmacology and toxicology of α- and β-asarone: a review of preclinical evidence. Phytomedicine 32:41–58
Article
CAS
PubMed
Google Scholar
Das BK, Choukimath SM, Gadad PC (2019) Asarone and metformin delays experimentally induced hepatocellular carcinoma in diabetic milieu. Life Sci 230:10–18
Article
CAS
PubMed
Google Scholar
Bahuguna A, Khan I, Bajpai V, Kang S (2017) MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharm 12:115–118
Article
Google Scholar
Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol Biol 281:301–311
CAS
PubMed
Google Scholar
Laguna JC, Alegret M, Roglans N (2014) Simple sugar intake and hepatocellular carcinoma: epidemiological and mechanistic insight. Nutrients 6:5933–5954
Article
PubMed
PubMed Central
CAS
Google Scholar
Stattin P, Bjor O, Ferrari P, Lukanova A, Lenner P, Lindahl B et al (2007) Prospective study of hyperglycemia and cancer risk. Diabetes Care 30:561–567
Article
PubMed
Google Scholar
Han H, Zhang T, Jin Z, Guo H, Wei X, Liu Y et al (2017) Blood glucose concentration and risk of liver cancer: systematic review and meta-analysis of prospective studies. Oncotarget 8:50164–50173
Article
PubMed
PubMed Central
Google Scholar
Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R et al (2014) Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int 2014:461917
Article
PubMed
PubMed Central
CAS
Google Scholar
Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208
Article
CAS
PubMed
PubMed Central
Google Scholar
Pollak M (2009) Do cancer cells care if their host is hungry? Cell Metab 9:401–403
Article
CAS
PubMed
Google Scholar
Algire C, Zakikhani M, Blouin MJ, Shuai JH, Pollak M (2008) Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endor Relat Cancer 15:833–839
Article
CAS
Google Scholar
Santisteban GA, Ely JT, Hamel EE, Read DH, Kozawa SM (1985) Glycemic modulation of tumor tolerance in a mouse model of breast cancer. Biochem Biophys Res Commun 132:1174–1179
Article
CAS
PubMed
Google Scholar
Masur K, Vetter C, Hinz A, Tomas N, Henrich H, Niggemann B et al (2011) Diabetogenic glucose and insulin concentrations modulate transcriptome and protein levels involved in tumour cell migration, adhesion and proliferation. British J Cancer 104:345–352
Article
CAS
Google Scholar
Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W et al (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16:79
Article
PubMed
PubMed Central
CAS
Google Scholar
Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase-development of the energy sensor concept. J Physiol 574:7–15
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang X, Saha AK, Wen R, Ruderman NB, Luo Z (2004) AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem Biophys Res Commun 321:161–167
Article
CAS
PubMed
Google Scholar
Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305
Article
PubMed
PubMed Central
Google Scholar
Jiang X, Tan HY, Teng S, Chan YT, Wang D, Wang N (2019) The role of AMP-activated protein kinase as a potential target of treatment of hepatocellular carcinoma. Cancers 11:647
Article
CAS
PubMed Central
Google Scholar
Phielix E, Szendroedi J, Roden M (2011) The role of metformin and thiazolidinediones in the regulation of hepatic glucose metabolism and its clinical impact. Trends Pharmacol Sci 32:607–616
Article
CAS
PubMed
Google Scholar
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci 122:253–270
Article
CAS
Google Scholar
Yang J, Kalhan SC, Hanson RW (2009) What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem 284:27025–27029
Article
CAS
PubMed
PubMed Central
Google Scholar
Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T et al (2015) Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell 60:195–207
Article
CAS
PubMed
Google Scholar
Montal ED, Dewi R, Bhalla K, Ou L, Hwang BJ, Ropell AE et al (2015) PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth. Mol Cell 60:571–583
Article
CAS
PubMed
PubMed Central
Google Scholar
He L, Li Y, Zeng N, Stiles BL (2020) Regulation of basal expression of hepatic PEPCK and G6Pase by AKT2. Biochem J 477:1021–1031
Article
CAS
PubMed
Google Scholar
Guo D, Bell EH, Mischel P, Chakravarti A (2014) Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des 20:2619–2626
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48:e245
Article
CAS
PubMed
PubMed Central
Google Scholar
Nickels JT Jr (2018) New links between lipid accumulation and cancer progression. J Biol Chem 293:6635–6636
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H et al (2009) EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2:ra82
Article
PubMed
PubMed Central
Google Scholar
Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D et al (2011) An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov 1:442–456
Article
CAS
PubMed
PubMed Central
Google Scholar
Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J et al (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24:6465–6481
Article
CAS
PubMed
Google Scholar
Yung MM, Chan DW, Liu VW, Yao KM, Ngan HY (2013) Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer 13:327
Article
CAS
PubMed
PubMed Central
Google Scholar
Karnevi E, Said K, Andersson R, Rosendahl A (2013) Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signaling pathway in human pancreatic cancer cells. BMC Cancer 13:235
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang F, Chen H, Du J, Wang B, Yang L (2018) Anticancer activity of metformin, an antidiabetic drug, against ovarian cancer cells involves inhibition of cysteine-rich 61 (cyr61)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Med Sci Monit 24:6093–6101
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K et al (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8:65–79
Article
CAS
PubMed
Google Scholar
Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16:797–803
Article
CAS
PubMed
Google Scholar
Takano A, Usui I, Haruta T, Kawahara J, Uno T, Iwata M et al (2001) Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol 21:5050–5062
Article
CAS
PubMed
PubMed Central
Google Scholar