Sohgaura A, Bigoniya P, Shrivastava B (2018) Diuretic potential of Cynodon dactylon, Emblica officinalis, Kalanchoe pinnata and Bambusa nutans. J Pharmacogn Phytochem 7(3):2895–2900 Corpus ID: 221795201
CAS
Google Scholar
Alexander RT, McArthur E, Jandoc R, Welk B, Fuster DG, Garg AX, Quinn RR (2018) Thiazide diuretic dose and risk of kidney stones in older adults: a retrospective cohort study. Can J Kidney Health Dis 5:2054358118787480
Article
Google Scholar
Tak B, Anuragi G, Sharma DC, Singh J, Durgawati D, Gupta R (2015) Role of forced diuresis in management of urinary calculi: an observational study. J Evol Med Dent Sci 4(100):16573–16579. https://doi.org/10.14260/jemds/2015/2468
Article
CAS
Google Scholar
Sohgaura AK, Bigoniya P, Shrivastava B (2018) In vitro antilithiatic potential of Kalanchoe pinnata, Emblica officinalis, Bambusa nutans and Cynodon dactylon. J Pharm Bioll Sci 10(2):83–89
Article
CAS
Google Scholar
Sohgaura AK, Bigoniya P, Shrivastava B (2019) Ameliorative effect of Kalanchoe pinnata, Emblica officinalis, Bambusa nutans and Cynodon dactylon on ethylene glycol and ammonium chloride induced nephrolithiasis. Pharmacologyonline 1:408–428
CAS
Google Scholar
Okada A, Nomura S, Higashibata Y, Hirose M, Gao B, Yoshimura M, Yasunori I, Takahiro Y, Keiichi T, Kenjiro K (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intra abdominal glyoxylate injection. Urol Res 35(2):89–99. https://doi.org/10.1007/s00240-007-0082-8
Article
CAS
PubMed
Google Scholar
Joshi S, Wang W, Khan SR (2017) Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: inflammatory changes are mainly associated with crystal deposition. PLoS One 12(11):e0185009. https://doi.org/10.1371/journal.pone.0185009
Article
CAS
PubMed
PubMed Central
Google Scholar
Bilbault H, Jean-Philippe HaymannShah J, Patel B, Patel S, Patel R (2016) Effect of Hordeum vulgare Linn. Seeds on glycolic acid induced urolithiasis in rats. Pharmacog Comm 2(2):34–39
Google Scholar
Sharma I, Khan W, Parveen R, Alam MJ, Ahmad I, Ansari MHR, Ahmad S (2017) Antiurolithiasis activity of bioactivity guided fraction of Bergenia ligulata against ethylene glycol induced renal calculi in rat. BioMed Res Int 2017:Article ID 1969525. https://doi.org/10.1155/2017/1969525
Article
CAS
Google Scholar
Yamaguchi S, Wiessner JH, Hasegawa AT, Hung LY, Mandel GS, Mandel NS (2005) Study of a rat model for calcium oxalate crystal formation without severe renal damage in selected conditions. Int J Urol 12(3):290–298. https://doi.org/10.1111/j.1442-2042.2005.01038.x
Article
CAS
PubMed
Google Scholar
Marengo SR, Chen DH, Kaung HL, Resnick MI, Yang L (2002) Decreased renal expression of the putative calcium oxalate inhibitor Tamm-Horsfall protein in the ethylene glycol rat model of calcium oxalate urolithiasis. J Urol 167(5):2192–2197. https://doi.org/10.1016/S0022-5347(05)65127-0
Article
CAS
PubMed
Google Scholar
Eguchi Y, Inoue M, Iida S, Matsuoka K, Noda S (2002) Heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) and bikunin are up-regulated during calcium oxalate nephrolithiasis. Kurume Med J 49(3):99–107. https://doi.org/10.2739/kurumemedj.49.99
Article
CAS
PubMed
Google Scholar
Tzou DT, Taguchia K, Chi T, Stoller ML (2016) Animal models of urinary stone disease. Int J Surg 36(D):596–606. https://doi.org/10.1016/j.ijsu.2016.11.018
Article
PubMed
Google Scholar
Taguchi K, Okada A, Hamamoto S, Unno R, Moritoki Y, Ando R, Mizuno K, Tozawa K, Kohri K, Yasui T (2016) M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep 6:Article number 35167
Article
Google Scholar
Rifai N (2018) Tietz Fundamentals of clinical chemistry and molecular diagnostics, 8th edn. Saunders, Toronto
Google Scholar
Laker MF, Hofmann AF, Meeuse BJ (1980) Spectrophotometric determination of urinary oxalate with oxalate oxidase prepared from moss. Clin Chem 26(7):827–830. https://doi.org/10.1093/clinchem/26.7.827
Article
CAS
PubMed
Google Scholar
Wacker WE, Ulmer DD, Vallee BL (1956) Metalloenzymes and myocardial infarction. II. Malic and lactic dehydrogenase activities and zinc concentrations in serum. N Engl J Med 255(10):450–456
Article
Google Scholar
Prasirtsak B, Thitiprasert S, Tolieng V, Assabumrungrat S, Tanasupawat S, Thongchul N (2019) D-Lactic acid fermentation performance and the enzyme activity of a novel bacterium Terrilactibacillus laevilacticus SK5–6. Ann Microbiol 69(13):1537–1546. https://doi.org/10.1007/s13213-019-01538-8
Article
CAS
Google Scholar
Geraghty R, Wood K, Sayer JA (2020) Calcium oxalate crystal deposition in the kidney: identification, causes and consequences. Urolithiasis 48(5):377–384. https://doi.org/10.1007/s00240-020-01202-w
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng Z, Chen W, Wang L, Ye Z, Gao S, Sun X, Guo Z (2015) Inhalation of hydrogen gas ameliorates glyoxylate-induced calcium oxalate deposition and renal oxidative stress in mice. Int J Clin Exp Pathol 8(3):2680–2689
PubMed
PubMed Central
Google Scholar
Khan S, Glenton PA (2010) Experimental induction of calcium oxalate nephrolithiasis in mice. J Urol 184(3):1189–1196. https://doi.org/10.1016/j.juro.2010.04.065
Article
CAS
PubMed
PubMed Central
Google Scholar
Knight J, Jiang J, Assimos DG, Holmes RP (2006) Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int 70(11):1929–1934. https://doi.org/10.1038/sj.ki.5001906
Article
CAS
PubMed
PubMed Central
Google Scholar
Knight J, Holmes RP, Cramer SD, Takayama T, Salido E (2012) Hydroxyproline metabolism in mouse models of primary hyperoxaluria. Am J Physiol Renal Physiol 302(6):F688–F693. https://doi.org/10.1152/ajprenal.00473.2011
Article
CAS
PubMed
Google Scholar
Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the ‘fixed particle’ theory in vivo. Nephrol Dial Transplant 24(12):3659–3668. https://doi.org/10.1093/ndt/gfp418
Article
CAS
PubMed
Google Scholar
Holmes RP, Assimos DG (1998) Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol 160(5):1617–1624. https://doi.org/10.1016/S0022-5347(01)62363-2
Article
CAS
PubMed
Google Scholar
Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 31(1):3–9. https://doi.org/10.1007/s00240-002-0286-x
Article
CAS
PubMed
Google Scholar
Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811. https://doi.org/10.1016/j.juro.2012.05.078
Article
CAS
PubMed
Google Scholar
Sun XY, Xu M, Ouyang JM (2017) Effect of crystal shape and aggregation of calcium oxalate monohydrate on cellular toxicity in renal epithelial cells. ACS Omega 2(9):6039–6052. https://doi.org/10.1021/acsomega.7b00510
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Ye T, Yang X, Liu J, Jiang K, Lu H, Xia D, Peng E, Chen Z, Sun F, Tang K, Ye Z (2019) H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine 50:366–378. https://doi.org/10.1016/j.ebiom.2019.10.059
Article
PubMed
PubMed Central
Google Scholar
Okada A, Hamamoto S, Taguchi K, Unno R, Sugino T, Ando R, Mizuno K, Tozawa K, Kohri K, Yasui T (2018) Kidney stone formers have more renal parenchymal crystals than non-stone formers, particularly in the papilla region. BMC Urol 18:19. https://doi.org/10.1186/s12894-018-0331-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripathi YC, Jhumka Z, Anjum N (2015) Evaluation of total polyphenol and antioxidant activity of leaves of Bambusa nutans and Bambusa vulgaris. J Pharm Res 9(4):271–277
CAS
Google Scholar
Bogucka-Kocka A, Zidorn C, Kasprzycka M, Szymczak G, Szewczyk K (2018) Phenolic acid content, antioxidant and cytotoxic activities of four Kalanchoë species. Saudi J Biol Sci 25(4):622–630. https://doi.org/10.1016/j.sjbs.2016.01.037
Article
CAS
PubMed
Google Scholar
Yamaga M, Tani H, Yamaki A, Tatefuji T, Hashimoto K (2019) Metabolism and pharmacokinetics of medium chain fatty acids after oral administration of royal jelly to healthy subjects. RSC Adv 9(27):15392–15401. https://doi.org/10.1039/C9RA02991E
Article
CAS
Google Scholar
Longo N, Frigeni M, Pasquali M (2016) Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 1863(10):2422–2435. https://doi.org/10.1016/j.bbamcr.2016.01.023
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng Z, Chen W, Gao S, Su L, Li N, Wang L, Lou Z, Dong X, Guo Z (2014) Therapeutic effect of Xue Niao An on glyoxylate induced calcium oxalate crystal deposition based on urinary metabonomics approach. J Clin Biochem Nutr 55(3):184–190. https://doi.org/10.3164/jcbn.14-61
Article
PubMed
PubMed Central
Google Scholar