Jain N, Jain GK, Javed S, Iqbal Z, Talegaonkar S, Ahmad FJ et al (2008) Recent approaches for the treatment of periodontitis. Drug Discov Today 13(21-22):932–943. https://doi.org/https://doi.org/10.1016/j.drudis.2008.07.010
Vyas SP, Sihorkar V, Mishra V (2000) Controlled and targeted drug delivery strategies towards intraperiodontal pocket diseases. J Clin Pharm Ther 25(1):21–42. https://doi.org/https://doi.org/10.1046/j.1365-2710.2000.00261.x
Banjar W, Alshammari MH (2014) Genetic factors in pathogenesis of chronic periodontitis. J Taibah Univ Med Sci 9(3):245–247. https://doi.org/https://doi.org/10.1016/j.jtumed.2014.04.003
Hajishengallis G (2014) Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol 35(1):3–11. https://doi.org/https://doi.org/10.1016/j.it.2013.09.001
Oh TJ, Eber R, Wang HL (2002) Periodontal diseases in the child and adolescent. J Clin Periodontol 29(5):400–410. https://doi.org/https://doi.org/10.1034/j.1600-051x.2002.290504.x
Juvekar S, Kathpalia H (2017) Solvent removal precipitation based in situ forming implant for controlled drug delivery in periodontitis. J Control Release 251:75–81. https://doi.org/https://doi.org/10.1016/j.jconrel.2017.02.022
He W, You M, Wan W, Xu F, Li F, Li A (2018) Point-of-care periodontitis testing: biomarkers, current technologies, and perspectives. Trends Biotechnol 36(11):1127–1144. https://doi.org/https://doi.org/10.1016/j.tibtech.2018.05.013
Komine-Aizawa S, Aizawa S, Hayakawa S (2019) Periodontal diseases and adverse pregnancy outcomes. J Obstet Gynaecol Res 45(1):5–12. https://doi.org/https://doi.org/10.1111/jog.13782
Botelho J, Machado V, Mascarenhas P, Rua J, Alves R, Cavacas MA et al (2018) Stress, salivary cortisol and periodontitis: a systematic review and meta-analysis of observational studies. Arch Oral Biol 96:58–65. https://doi.org/https://doi.org/10.1016/j.archoralbio.2018.08.016
Aminu N, Chan SY, Yam MF, Toh SM (2019) A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. Int J Pharm 570:118659. https://doi.org/https://doi.org/10.1016/j.ijpharm.2019.118659
Fernandes T, Bhavsar C, Sawarkar S, D'Souza A (2018) Current and novel approaches for control of dental biofilm. Int J Pharm 536(1):199–210. https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.11.019
Joshi D, Garg T, Goyal AK, Rath G (2016) Advanced drug delivery approaches against periodontitis. Drug Deliv 23(2):363–377. https://doi.org/https://doi.org/10.3109/10717544.2014.935531
Schwach-Abdellaoui K, Vivien-Castioni N, Gurny R (2000) Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur J Pharm Biopharm 50(1):83-99. https://doi.org/https://doi.org/10.1016/s0939-6411(00)00086-2
Beg S, Dhiman S, Sharma T, Jain A, Sharma RK, Jain A et al (2020) Stimuli responsive in situ gelling systems loaded with PLGA nanoparticles of moxifloxacin hydrochloride for effective treatment of periodontitis. AAPS PharmSciTech 21(3):76. https://doi.org/https://doi.org/10.1208/s12249-019-1613-7
Kulkarni AP, Khan SKA, Dehghan MH (2012) Evaluation of polaxomer-based in situ gelling system of articaine as a drug delivery system for anesthetizing periodontal pockets–an in vitro study. Indian J Dentistry 3(4):201–208. https://doi.org/https://doi.org/10.1016/j.ijd.2012.07.006
Yadav SK, Khan G, Bansal M, Thokala S, Bonde GV, Upadhyay M et al (2018) Multiparticulate based thermosensitive intra-pocket forming implants for better treatment of bacterial infections in periodontitis. Int J Biol Macromol 116:394–408. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.04.179
Swain GP, Patel S, Gandhi J, Shah P (2019) Development of moxifloxacin hydrochloride loaded in-situ gel for the treatment of periodontitis: in-vitro drug release study and antibacterial activity. J Oral Biol Craniofac Res 9(3):190–200. https://doi.org/https://doi.org/10.1016/j.jobcr.2019.04.001
Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH et al (2010) The human oral microbiome. J Bacteriol 192(19):5002–5017. https://doi.org/https://doi.org/10.1128/JB.00542-10
Hickey NA, Whitehead KA, Shalamanova L, Butler JA, Taylor RL (2019) A novel microbiological medium for the growth of periodontitis associated pathogens. J Microbiol Methods 163:105647. https://doi.org/https://doi.org/10.1016/j.mimet.2019.105647
Fernandes T, Bhavsar C, Sawarkar S, D’souza A (2018) Current and novel approaches for control of dental biofilm. Int J Pharm 536(1):199–210
Article
CAS
PubMed
Google Scholar
Kumar S (2019) Evidence-based update on diagnosis and management of gingivitis and periodontitis. Dent Clin N Am 63(1):69–81. https://doi.org/https://doi.org/10.1016/j.cden.2018.08.005
Ababneh KT, Taha AH, Abbadi MS, Karasneh JA, Khader YS (2010) The association of aggressive and chronic periodontitis with systemic manifestations and dental anomalies in a jordanian population: a case control study. Head Face Med 6(1):30. https://doi.org/https://doi.org/10.1186/1746-160X-6-30
Khan S, Khalid T, Awan KH (2016) Chronic periodontitis and smoking. Prevalence and dose-response relationship. Saudi Med J 37(8):889–894. https://doi.org/https://doi.org/10.15537/smj.2016.8.14223
Trivedi S, Lal N (2017) Antioxidant enzymes in periodontitis. J Oral Biol Craniofac Res 7(1):54–57. https://doi.org/https://doi.org/10.1016/j.jobcr.2016.08.001
Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS et al (2018) A new classification scheme for periodontal and peri-implant diseases and conditions - introduction and key changes from the 1999 classification. J Clin Periodontol 45(Suppl 20):S1–S8. https://doi.org/https://doi.org/10.1111/jcpe.12935
González-Ramírez J, Serafín-Higuera N, Concepción Silva Mancilla M, Martínez-Coronilla G, Famanía-Bustamante J, Laura López López A (2020) Use of biomarkers for the diagnosis of periodontitis Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations. IntechOpen. p
Ebersole JL, Schuster JL, Stevens J, Dawson D, Kryscio RJ, Lin Y et al (2013) Patterns of salivary analytes provide diagnostic capacity for distinguishing chronic adult periodontitis from health. J Clin Immunol 33(1):271–279. https://doi.org/https://doi.org/10.1007/s10875-012-9771-3
Sánchez GA, Miozza VA, Delgado A, Busch L (2013) Salivary IL-1β and PGE 2 as biomarkers of periodontal status, before and after periodontal treatment. J Clin Periodontol 40(12):1112–1117. https://doi.org/https://doi.org/10.1111/jcpe.12164
Shimada Y, Tabeta K, Sugita N, Yoshie H (2013) Profiling biomarkers in gingival crevicular fluid using multiplex bead immunoassay. Arch Oral Biol 58(6):724–730. https://doi.org/https://doi.org/10.1016/j.archoralbio.2012.11.012
Luke R, Khan SN, Iqbal PS, Soman RR, Chakkarayan J, Krishnan V (2015) Estimation of specific salivary enzymatic biomarkers in individuals with gingivitis and chronic periodontitis: a clinical and biochemical study. J Int Oral Health 7(9):54–57
PubMed
PubMed Central
Google Scholar
Ito H, Numabe Y, Sekino S, Murakashi E, Iguchi H, Hashimoto S et al (2014) Evaluation of bleeding on probing and gingival crevicular fluid enzyme activity for detection of periodontally active sites during supportive periodontal therapy. Odontology 102(1):50–56. https://doi.org/https://doi.org/10.1007/s10266-012-0090-1
Leppilahti JM, Hernandez-Rios PA, Gamonal JA, Tervahartiala T, Brignardello-Petersen R, Mantyla P et al (2014) Matrix metalloproteinases and myeloperoxidase in gingival crevicular fluid provide site-specific diagnostic value for chronic periodontitis. J Clin Periodontol 41(4):348–356. https://doi.org/https://doi.org/10.1111/jcpe.12223
Baeza M, Garrido M, Hernandez-Rios P, Dezerega A, Garcia-Sesnich J, Strauss F et al (2016) Diagnostic accuracy for apical and chronic periodontitis biomarkers in gingival crevicular fluid: an exploratory study. J Clin Periodontol 43(1):34–45. https://doi.org/https://doi.org/10.1111/jcpe.12479
Gul SS, Douglas CW, Griffiths GS, Rawlinson A (2016) A pilot study of active enzyme levels in gingival crevicular fluid of patients with chronic periodontal disease. J Clin Periodontol 43(8):629–636. https://doi.org/https://doi.org/10.1111/jcpe.12568
Kumar AK, Reddy NR, Babu M, Kumar PM, Reddy VS, Chavan CV (2013) Estimation of prostaglandin E2 levels in gingival crevicular fluid in periodontal health, disease and after treatment. Contemp Clin Dent 4(3):303–306. https://doi.org/https://doi.org/10.4103/0976-237X.118354
Ozden FO, Sakallioglu EE, Demir E, Bilgici B, Tuncel OK, Gokosmanoglu F et al (2017) Effect of bisphosphonate as an adjunct treatment for chronic periodontitis on gingival crevicuar fluid levels of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in postmenopausal osteoporosis. J Oral Sci 59(1):147–155. https://doi.org/https://doi.org/10.2334/josnusd.16-0241
Ochanji AA, Matu NK, Mulli TK (2017) Association of salivary RANKL and osteoprotegerin levels with periodontal health. Clin Exp Dent Res 3(2):45–50. https://doi.org/https://doi.org/10.1002/cre2.49
Hassan SH, El-Refai MI, Ghallab NA, Kasem RF, Shaker OG (2015) Effect of periodontal surgery on osteoprotegerin levels in gingival crevicular fluid, saliva, and gingival tissues of chronic periodontitis patients. Dis Markers 2015:341259. https://doi.org/https://doi.org/10.1155/2015/341259
Ramesh A, Bhandary R, Thomas B, D'Souza SR, Kumari S (2013) Alkaline phosphatase-a diagnostic marker of periodontitis in postmenopausal women-a biochemical study. Nitte Univ J Health Sci 3(4):71–73
Google Scholar
Badea V, Grigorian M, Nucă C, Amariei C, Martinescu A, Voineagu L (2013) Study regarding the use of salivary 8-hydroxideoxyguanosine and interleukin-1 gene polymorphism - as potential biomarkers in the diagnosis of aggressive periodontitis. Roman Rev Lab Med 21(1):75–82. https://doi.org/https://doi.org/10.2478/rrlm-2013-0020
Herr AE, Hatch AV, Giannobile WV, Throckmorton DJ, Tran HM, Brennan JS et al (2007) Integrated microfluidic platform for oral diagnostics. Ann N Y Acad Sci 1098:362–374. https://doi.org/https://doi.org/10.1196/annals.1384.004
Christodoulides N, Floriano PN, Miller CS, Ebersole JL, Mohanty S, Dharshan P et al (2007) Lab-on-a-chip methods for point-of-care measurements of salivary biomarkers of periodontitis. Ann N Y Acad Sci 1098(1):411–428. https://doi.org/https://doi.org/10.1196/annals.1384.035
Gaertig C, Niemann K, Berthold J, Giel L, Leitschuh N, Boehm C et al (2015) Development of a point-of-care-device for fast detection of periodontal pathogens. BMC Oral Health 15(1):165. https://doi.org/https://doi.org/10.1186/s12903-015-0155-y
J-i K, Abe K, Yatsushiro S, Bando M, Hiroshima Y, Nagata T et al (2012) Determination of calprotectin in gingival crevicular fluid by immunoassay on a microchip. Clin Biochem 45(15):1239–1244. https://doi.org/https://doi.org/10.1016/j.clinbiochem.2012.05.009
Imamura K, Takayama S, Saito A, Inoue E, Nakayama Y, Ogata Y et al (2015) Evaluation of a novel immunochromatographic device for rapid and accurate clinical detection of Porphyromonas gingivalis in subgingival plaque. J Microbiol Methods 117:4–10. https://doi.org/https://doi.org/10.1016/j.mimet.2015.07.002
Mäntylä P, Stenman M, Kinane DF, Tikanoja S, Luoto H, Salo T et al (2003) Gingival crevicular fluid collagenase-2 (MMP-8) test stick for chair-side monitoring of periodontitis. J Periodontal Res 38(4):436–439. https://doi.org/https://doi.org/10.1034/j.1600-0765.2003.00677.x
O'Brien-Simpson NM, Burgess K, Lenzo JC, Brammar GC, Darby IB, Reynolds EC (2017) Rapid chair-side test for detection of Porphyromonas gingivalis. J Dent Res 96(6):618–625. https://doi.org/https://doi.org/10.1177/0022034517691720
Rathnayake N, Gieselmann D-R, Heikkinen AM, Tervahartiala T, Sorsa T (2017) Salivary diagnostics—point-of-care diagnostics of MMP-8 in dentistry and medicine. Diagnostics 7(1):7. https://doi.org/https://doi.org/10.3390/diagnostics7010007
Yee EH, Lathwal S, Shah PP, Sikes HD (2017) Detection of biomarkers of periodontal disease in human saliva using stabilized, vertical flow immunoassays. ACS sensors 2(11):1589–1593. https://doi.org/https://doi.org/10.1021/acssensors.7b00745
Bhakta SA, Borba R, Taba M Jr, Garcia CD, Carrilho E (2014) Determination of nitrite in saliva using microfluidic paper-based analytical devices. Anal Chim Acta 809:117–122. https://doi.org/https://doi.org/10.1016/j.aca.2013.11.044
Alhogail S, Suaifan G, Bizzarro S, Kaman WE, Bikker FJ, Weber K et al (2018) On site visual detection of Porphyromonas gingivalis related periodontitis by using a magnetic-nanobead based assay for gingipains protease biomarkers. Mikrochim Acta 185(2):149. https://doi.org/https://doi.org/10.1007/s00604-018-2677-x
Wignarajah S, Suaifan GA, Bizzarro S, Bikker FJ, Kaman WE, Zourob M (2015) Colorimetric assay for the detection of typical biomarkers for periodontitis using a magnetic nanoparticle biosensor. Anal Chem 87(24):12161–12168. https://doi.org/https://doi.org/10.1021/acs.analchem.5b03018
Chepuri T, Gooty JR, Durvasala S, Palaparthi R (2015) Chair side diagnostic test kits in periodontics. Indian J Dental Advanc 7(1):41–46
Google Scholar
Ravishankar P, Mithra D, Chakraborty P, Kumar A (2017) Chairside diagnostics in periodontics. SRM J Res Dent Sci 8(2):78. https://doi.org/https://doi.org/10.4103/srmjrds.srmjrds_4_17
Malagi S (2012) Chairside diagnostic test kits in periodontics-a review. Int Arab J Dentistry 3(3)
Munjal S, Miethe P, Netuschil L, Struck F, Maier K, Bauermeister C (2007) Immunoassay-based diagnostic point-of-care technology for oral specimen. Ann N Y Acad Sci 1098(1):486–489. https://doi.org/https://doi.org/10.1196/annals.1384.017
Phaechamud T, Thurein SM, Chantadee T (2018) Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel. Asian J Pharm Sci 13(2):131–142. https://doi.org/https://doi.org/10.1016/j.ajps.2017.09.004
Do M, Neut C, Metz H, Delcourt E, Siepmann J, Mäder K et al (2015) Eur J Pharm Biopharm 94:273–283. https://doi.org/https://doi.org/10.1016/j.ejpb.2015.05.018
AlAhmari F, Ahmed HB, Al-Kheraif AA, Javed F, Akram Z (2019) Effectiveness of scaling and root planning with and without adjunct antimicrobial photodynamic therapy in the treatment of chronic periodontitis among cigarette-smokers and never-smokers: a randomized controlled clinical trial. Photodiagn Photodyn Ther 25:247–252. https://doi.org/https://doi.org/10.1016/j.pdpdt.2019.01.006
Mundargi RC, Srirangarajan S, Agnihotri SA, Patil SA, Ravindra S, Setty SB et al. (2007) Development and evaluation of novel biodegradable microspheres based on poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release 119(1):59-68. https://doi.org/https://doi.org/10.1016/j.jconrel.2007.01.008
Sah AK, Dewangan M, Suresh PK (2019) Potential of chitosan-based carrier for periodontal drug delivery. Colloids Surf B Biointerfaces 178:185–198. https://doi.org/https://doi.org/10.1016/j.colsurfb.2019.02.044
Do M, Neut C, Metz H, Delcourt E, Mäder K, Siepmann J et al (2015) In-situ forming composite implants for periodontitis treatment: how the formulation determines system performance. Int J Pharm 486(1-2):38–51. https://doi.org/https://doi.org/10.1016/j.ijpharm.2015.03.026
Agossa K, Lizambard M, Rongthong T, Delcourt-Debruyne E, Siepmann J, Siepmann F (2017) Physical key properties of antibiotic-free, PLGA/HPMC-based in-situ forming implants for local periodontitis treatment. Int J Pharm 521(1-2):282–293. https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.02.039
Ranjan R, Patil SR, Veena H R (2017) Effect of in-situ application of simvastatin gel in surgical management of osseous defects in chronic periodontitis-a randomized clinical trial. J Oral Biol Craniofac Res 7(2):113-118. https://doi.org/https://doi.org/10.1016/j.jobcr.2017.05.005
Kassem AA, Ismail FA, Naggar VF, Aboulmagd E (2014) Comparative study to investigate the effect of meloxicam or minocycline HCl in situ gel system on local treatment of periodontal pockets. AAPS PharmSciTech 15(4):1021–1028. https://doi.org/https://doi.org/10.1208/s12249-014-0118-7
Do MP, Neut C, Delcourt E, Seixas Certo T, Siepmann J, Siepmann F (2014) In situ forming implants for periodontitis treatment with improved adhesive properties. Eur J Pharm Biopharm 88(2):342–350. https://doi.org/https://doi.org/10.1016/j.ejpb.2014.05.006
Ruel-Gariepy E, Leroux J-C (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58(2):409–426. https://doi.org/https://doi.org/10.1016/j.ejpb.2004.03.019
Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670
Article
CAS
PubMed
Google Scholar
Devasani SR, Dev A, Rathod S, Deshmukh G (2016) An overview of in situ gelling systems. Pharmaceut Biolog Evaluat 3(1):60–69
Google Scholar
Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670. https://doi.org/https://doi.org/10.1016/j.addr.2006.09.020
Chakrabarty S, Nath B (2018) Oral in-situ gel for periodontitis: a review. World J Pharm Res 7(11):262–275. https://doi.org/https://doi.org/10.20959/wjpr201811-12391
Kumbhar AB, Rakde AK, Chaudhari P (2013) In situ gel forming injectable drug delivery system. Int J Pharm Sci Res 4(2):597–609
CAS
Google Scholar
Sheshala R, Quah SY, Tan GC, Meka VS, Jnanendrappa N, Sahu PS (2019) Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Deliv Transl Res 9(2):434–443. https://doi.org/https://doi.org/10.1007/s13346-018-0488-6
Bansal M, Mittal N, Yadav SK, Khan G, Gupta P, Mishra B et al (2018) Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: preparation, in-vitro characterization and antimicrobial study. J Oral Biol Craniofac Res 8(2):126–133. https://doi.org/https://doi.org/10.1016/j.jobcr.2017.12.005
Rajendran S, Kumar KS, Ramesh S, Rao SR (2017) Thermoreversible in situ gel for subgingival delivery of simvastatin for treatment of periodontal disease. Int J Pharm Investig 7(2):101–106. https://doi.org/https://doi.org/10.4103/jphi.JPHI_26_17
Nasra MM, Khiri HM, Hazzah HA, Abdallah OY (2017) Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Deliv 24(1):133–142. https://doi.org/https://doi.org/10.1080/10717544.2016.1233591
Bansal M, Mittal N, Yadav SK, Khan G, Mishra B, Nath G (2016) Clinical evaluation of thermoresponsive and mucoadhesive chitosan in situ gel containing levofloxacin and metronidazole in the treatment of periodontal pockets – a split-mouth, clinical study. J Pierre Fauchard Acad (India Section) 30(1):6–14. https://doi.org/https://doi.org/10.1016/j.jpfa.2016.10.003
Phaechamud T, Senarat S, Puyathorn N, Praphanwittaya P (2019) Solvent exchange and drug release characteristics of doxycycline hyclate-loaded bleached shellac in situ-forming gel and-microparticle. Int J Biol Macromol 135:1261–1272. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.11.098
Phaechamud T, Lertsuphotvanit N, Praphanwittaya P (2018) Viscoelastic and thermal properties of doxycycline hyclate-loaded bleached shellac in situ-forming gel and–microparticle. J Drug Deliv Sci Technol 44:448–456. https://doi.org/https://doi.org/10.1016/j.jddst.2018.01.021
Phaechamud T, Setthajindalert O (2018) Antimicrobial in-situ forming gels based on bleached shellac and different solvents. J Drug Deliv Sci Technol 46:285–293. https://doi.org/https://doi.org/10.1016/j.jddst.2018.05.035
Mei L, Huang X, Xie Y, Chen J, Huang Y, Wang B et al (2017) An injectable in situ gel with cubic and hexagonal nanostructures for local treatment of chronic periodontitis. Drug Deliv 24(1):1148–1158. https://doi.org/https://doi.org/10.1080/10717544.2017.1359703
Phaechamud T, Chanyaboonsub N, Setthajindalert O (2016) Doxycycline hyclate-loaded bleached shellac in situ forming microparticle for intraperiodontal pocket local delivery. Eur J Pharm Sci 93:360–370. https://doi.org/https://doi.org/10.1016/j.ejps.2016.08.034
Min KH, Jang E-Y, Lee HJ, Hwang Y-S, Ryu J-I, Moon J-H et al (2019) pH-responsive mineralized nanoparticles for bacteria-triggered topical release of antibiotics. J Ind Eng Chem 71:210–219. https://doi.org/https://doi.org/10.1016/j.jiec.2018.11.027
Priyanka M, Meenakshi B (2011) Study of secnidazole-serratiopeptidase alginate/HPMC gels for periodontal delivery. Int J Pharm Technol Res 3(3):1488–1494
Google Scholar
Yadav S, Ahuja M, Kumar A, Kaur H (2014) Gellan-thioglycolic acid conjugate: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym 99:601–607. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.08.068
Obaidat AA, Altamimi RM, Hammad MM (2010) Formulation and release of doxycycline HCL from an ion activatedin situgelling delivery system for the treatment of periodontal disease. J Appl Polym Sci 115(2):811–816. https://doi.org/https://doi.org/10.1002/app.31204
Chichiricco PM, Riva R, Thomassin JM, Lesoeur J, Struillou X, Le Visage C et al (2018) In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration. Dent Mater 34(12):1769–1782. https://doi.org/https://doi.org/10.1016/j.dental.2018.09.017
Saita M, Kaneko J, Sato T, Takahashi SS, Wada-Takahashi S, Kawamata R et al (2016) Novel antioxidative nanotherapeutics in a rat periodontitis model: reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials 76:292–301. https://doi.org/https://doi.org/10.1016/j.biomaterials.2015.10.077