Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Barnighausen T (2017) The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study. Lancet Diabetes Endocrinol 5:423–430
Article
Google Scholar
Meldgaard T, Brock C (2019) Diabetes and the gastrointestinal tract. Med (United Kingdom) 47(7):454–459
Google Scholar
Bacanli M, Dilsiz SA, Başaran N, Başaran AA (2019) Effects of phytochemicals against diabetes. Adv Food Nutr Res:1–30
Kavvoura FK, Owen KR (2019) Monogenic diabetes. Med (United Kingdom) 47(1):16–21
Google Scholar
Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82
Article
Google Scholar
Kumar V, Robinson AHN (2019) Diabetes and orthopaedic surgery: a review. Orthop Traumatol:1–5
Mollazadeh H, Mahdian D, Hosseinzadeh H (2019) Phytomedicine medicinal plants in treatment of hypertriglyceridemia: a review based on their mechanisms and effectiveness. Phytomedicine. 53:43–52
Article
CAS
Google Scholar
Hernández RJ, Mahmoud AM, Königsberg M, López NE, Guerrero D (2019) Obesity: pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 111:503–516
Article
Google Scholar
Krauss RM (2004) Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27:1496–1504
Article
CAS
Google Scholar
Rahmani AH, Al Zohairy MA, Aly SM, Khan MA. (2014) Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. BioMed Research International, 1–15.
Alexandra M, Gonçalves T, Alves RC, Oliveira MBPP, Costa HS. (2018) Melon (Cucumis melo L.) by-products: potential food ingredients for novel functional foods? Trends Food Sci Technol. 1-9.
Singh AK, Kumar S, Singh H, Rai VP, Singh BD, Pandey S (2015) Genetic diversity in Indian snapmelon (Cucumis melo var. momordica) accessions revealed by ISSR markers. POJ. 8(1):9–16
CAS
Google Scholar
Szamosi C, Solmaz I, Sari N, Bã C (2010) Morphological evaluation and comparison of Hungarian and Turkish melon (Cucumis melo L.) germplasm. Sci Hortic 124(2):170–182
Article
CAS
Google Scholar
Sabanadzovic S, Wintermantel WM, Valverde RA, Mccreight JD (2016) Aboughanem-sabanadzovic N. Cucumis melo endornavirus: genome organization, host range and co-divergence with the host. Virus Res 214:49–58
Article
CAS
Google Scholar
Srivastava AK, Mukerjee A, Ramteke PW, Pandey H, Mishra SB (2017) Antiulcer potential of Cucumis melo var. momordica (Roxb), Duthie & Fuller fruits in experimental animal. J Pharm Res 16(3):218–223
Article
CAS
Google Scholar
Vishwakarma VK, Gupta JK, Upadhyay PK (2017) Pharmacological importance of Cucumis melo L.: an overview. Asian J Pharm Clin Res 10(3):8–12
Article
CAS
Google Scholar
Waseem M, Rauf A, Rehman S, Ahmed R. (2018) Pharmacognostical and pharmacological review of Cucumis melo L. including Unani medicine perspective. Int J Pharmacogn Chinese Med. 1–8.
Bidkar J (2012) Anti-hyperlipidemic activity of Cucumis melo fruit peel extracts in high cholesterol diet induced hyperlipidemia in rats. Journal of Complementary and Integrative Medicine 9(1):1–18
Article
Google Scholar
Zhang X, Bai Y, Wang Y, Wang C, Fu J, Gao L, et al. Anticancer properties of different solvent extracts of Cucumis melo L. seeds and whole fruit and their metabolite profiling using HPLC and GC-MS. Kabir Y, editor. Biomed Res Int. 2020.
Mushtaq A, Akbar S, Zargar MA, Wali AF, Malik AH, Dar MY, Hamid R, Ganai BA. (2014) Phytochemical screening, physicochemical properties, acute toxicity testing and screening of hypoglycaemic activity of extracts of Eremurus himalaicus baker in normoglycaemic Wistar strain albino rats. BioMed Research International. 1-6.
Ahmad MI, Ansari SH, Naquvi KJ, Shuaib M (2012) Pharmacognostical studies and establishment of quality parameters of Cucumis melo L. cv. namdhari. Int J Pharm Pharm Sci 4:324–329
Google Scholar
Gandhi GR, Sasikumar P (2012) Antidiabetic effect of Merremia emarginata Burm. F. in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed 2(4):281–286
Article
CAS
Google Scholar
Zhang M, Lv X-Y, Li J, Xu ZG, Chen L (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Kern T, editor. Exp Diabetes Res.
Choudhari VP, Gore KP, Pawar AT (2017) Antidiabetic, antihyperlipidemic activities and herb–drug interaction of a polyherbal formulation in streptozotocin induced diabetic rats. J Ayurveda Integr Med 8(4):218–225
Article
Google Scholar
Alagar RM, Sahithi G, Vasanthi R, David B, Rao KNV, Selvakumar D (2015) Study of phytochemical and antioxidant activity of Cucumis melo var. agrestis fruit study of phytochemical and antioxidant activity of Cucumis melo var. agrestis fruit. Journal of Pharmacognosy and Phytochemistry 4(2):303–306
Google Scholar
Fahamiya N, Aslam M, Siddiqui A, Shiffa M, Ahmed A, Khan MS (2012) Pharmacognostical study and development of quality control parameters for Cucumis melo Linn. Am J PharmTech Res 2(4):1–14
Google Scholar
Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M (2016) The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician 8(1):1832–1842
Article
Google Scholar
Mahdizadeh R, Moein S, Soltani N, Malekzadeh K, Moein M (2018) Study the molecular mechanism of Salvia species in prevention of diabetes. Int J Pharm Sci Res 9(11):4512–4521
CAS
Google Scholar
Ibrahim DS, Abd El-Maksoud MA (2018) Antioxidant and antidiabetic activities of Cucumis melo var. Flexuosus leaf extract. Indian J Physiol Pharmacol 62(4):445–452
CAS
Google Scholar
Hunt JV, Smith CC, Wolff SP (1990) Auto-oxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes. 39:1420–1424
Article
CAS
Google Scholar
Sato Y, Hotto N, Sakamoto N, Matsuoka S, Ohishi N, Yafi K (1979) Lipid peroxide level in plasma of diabetic patients. Biochemical Medicine 2:104–107
Article
Google Scholar
Heikkila RG, Winston B, Cohen G, Barden H (1976) Alloxan induced diabetes: evidence of hydroxyl radical as a cytotoxic intermediate. Biochem Pharmacol 25:1085–1092
Article
CAS
Google Scholar
Mallek-Ayadi S, Bahloul N, Kechaou N (2018) Chemical composition and bioactive compounds of Cucumis melo L. seeds: potential source for new trends of plant oils. Process Saf Environ Prot 113:68–77
Article
CAS
Google Scholar
Jaiprakash R, Naga Rani MA, Venkataraman BV (1993) Effect of felodipine on serum lipid profile in short term streptozotocin diabetes in rats. Indian J Exp Biol 1:283–284
Google Scholar
Hem DA (1977) Exploration and exploitation. In: Hem DA (ed) Biologically active substances. John Wiley & Sons, Chichester, New York, p 209
Google Scholar
Faas FH, Dang AQ, Norman J, Carter WJ (1988) Red blood cell and plasma fatty acid composition in diabetes mellitus. Metabolism. 37:711–713
Article
CAS
Google Scholar
Tilvis RS, Miettinen TA (1985) Fatty acid composition of serum lipids, erythrocytes and platelets in insulin-dependent diabetic women. J Clin Endocrinol Metab 61:741–745
Article
CAS
Google Scholar
Bhowmik B, Siddiquee T, Mujumder A, Afsana F, Hussain A, Holmboe-ottesen G (2018) Serum lipid profile and its association with diabetes and prediabetes in a rural. Bangladeshi population 15(9):1–12
Google Scholar
Ozder A (2014) Lipid profile abnormalities seen in T2DM patients in primary healthcare in Turkey: a cross-sectional study. Lipids Health Dis 13:183
Article
Google Scholar
Ahmed I, Lakhani MS, Gillett M, John A, Raza H (2001) Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 51(3):155–161
Article
CAS
Google Scholar
Goodman MW, Michels LD, Keane WF (1982) Intestinal and hepatic cholesterol synthesis in the alloxan diabetic rats. Proc Soc Exp Biol Med 170:286–290
Article
CAS
Google Scholar
Glasgow AM, August GP, Hung W (1981) Relationship between control and serum lipids in juvenile onset diabetes. Diabetes Care 4:76–80
Article
CAS
Google Scholar
Kondo A, Muranaka Y, Ohta I, Notsu K, Manabe M, Kotani K, Saito K, Mackawa M, Kanno T (2001) Relationship between tgandariglyceride concentrations and LDL size evaluated by malondialdehyde-modified LDL. Clin Chem 47:893–900
Article
CAS
Google Scholar
Mathe D (1995) Dyslipidemia and diabetes: animal models. Diabete Metab 21:106–111
CAS
PubMed
Google Scholar
Kudchodkar BJ, Lee JC, Lee SM, DiMarco NM, Lacko A (1988) Effect on cholesterol homeostasis in diabetic rats. J Lipid Res 29:1272–1287
CAS
PubMed
Google Scholar
Bruan JE, Severson DL (1992) Lipoprotein lipase release from cardiac myocytes is increased by decavandate but not insulin. Am J Phys 262:663–670
Google Scholar
Lopes-Virella MF, Whitmann HJ, Mayfield PK, Loadhott CB, Colwell JA (1983) Effect of metabolic control on lipid, lipoprotein and apolipoprotein levels in 55 insulin-dependent diabetic patients: a longitudinal study. Diabetes. 32:20–25
Article
CAS
Google Scholar