Chikezie PC, Ojiako OA (2015) ‘Herbal medicine: yesterday, today and tomorrow’ Altern Integr Med 4(3):195. https://doi.org/10.4172/2327-5162.1000195
Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Tsouh Fokou PV, Yousef Z, Amiruddin Zakaria Z, Varoni EM (2018) Aloe genus plants: from farm to food applications and phytopharmacotherapy. Int J Mol Sci 19(9):2843 https://doi.org/10.3390/ijms19092843
Article
PubMed Central
CAS
Google Scholar
Surjushe A, Vasani R, Saple DG (2008) Aloe vera: a short review. Indian J Dermatol 53(4):163–166. https://doi.org/10.4103/0019-5154.44785
Article
PubMed
PubMed Central
Google Scholar
Sharma P, Kharkwal AC, Kharkwal H, Abdin MZ, Varma A (2014) A review on pharmacological properties of Aloe vera. Int J Pharm Sci Rev Res 29(2):31–37
Google Scholar
Banik S, Sharangi AB (2019) Phytochemistry, health benefits and toxicological profile of Aloe. J Pharmacog Phytochem 8(3):4499–4506
Google Scholar
Cock IE (2015) The genus Aloe: phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. Prog Drug Res 70:179–235. https://doi.org/10.1007/978-3-0348-0927-6_6
Article
CAS
PubMed
Google Scholar
Guo X, Mei N (2016) Aloe vera: a review of toxicity and adverse clinical effects. J Environ Sci Health C 34(2):77–96. https://doi.org/10.1080/10590501.2016.1166826
Article
CAS
Google Scholar
Haq I (2004) Safety of medicinal plants. Pak J Med Res 43(4):203–210
Google Scholar
Ernst E (2003) Cardiovascular adverse effects of herbal medicines: a systematic review of the recent literature. Can J Cardiol 19(7):818–827
CAS
PubMed
Google Scholar
Emmanuel AM, Roger KK, Toussaint DG, Koffi K (2018) Acute and subacute toxicity of the aqueous extract of Amaranthus viridis (Amaranthaceae) leaves in rats. J Phytopharmacolo 7(4):366–372
Google Scholar
de Mel Y, Perera S, Ratnaweera PB, Jayasinghe CD (2017) Novel insights of toxicological evaluation of herbal medicine: human based toxicological assays. Asian J Pharm Pharmacol 3(2):41–49
Google Scholar
El Sayed AM, Ezzat SM, El Naggar MM, El Hawary SS (2016) In vivo diabetic wound healing effect and HPLC–DAD–ESI–MS/MS profiling of the methanol extracts of eight Aloe species. Rev Bras 26(3):352–362. https://doi.org/10.1016/j.bjp.2016.01.009
Article
CAS
Google Scholar
Dharajiya D, Pagi N, Jasani H, Patel P (2017) Antimicrobial activity and phytochemical screening of Aloe vera (Aloe barbadensis Miller). Int J Curr Microbiol App Sci 6(3):2152–2162
Article
CAS
Google Scholar
Park MK, Park JH, Kim NY, Shin YG, Choi YS, Lee JG, Kim KH, Lee SK (1998) Analysis of 13 phenolic compounds in Aloe species by high performance liquid chromatography. Int J Plant Chem Biochem Techn 9(4):186–191
CAS
Google Scholar
Lai Q, Wang H, Guo X, Abbasi AM, Wang T, Li T, Fu X, Li J, Liu RH (2016) Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of seven cultivars of Aloe. Int J Food Sci Technol 51(6):1489–1494. https://doi.org/10.1111/ijfs.13093
Article
CAS
Google Scholar
Malik NZ, Riaz M, Noshad QQ, Rashid N, Ain QU, Hussain A (2017) Morphological, phytochemical and antifungal analysis of Aloe vera L. leaf extracts. Asian J Agri Biol 5(4):177–187
Google Scholar
Añibarro-Ortega M, Pinela J, Barros L, Ćirić A, Silva SP, Coelho E, Mocan A, Calhelha RC, Soković M, Coimbra MA, Ferreira IC (2019) Compositional features and bioactive properties of Aloe vera leaf (fillet, mucilage, and rind) and flower. Antioxidants 8(10):1–21
Article
CAS
Google Scholar
Palermo FA, Cocci P, Angeletti M, Felici A, Polzonetti-Magni AM, Mosconi G (2013) Dietary Aloe vera components’ effects on cholesterol lowering and estrogenic responses in juvenile goldfish, Carassius auratus. Fish Physiol Biochem 39(4):851–861. https://doi.org/10.1007/s10695-012-9745-7
Article
CAS
PubMed
Google Scholar
Dey P, Dutta S, Chowdhury A, Das AP, Chaudhuri TK (2017) Variation in phytochemical composition reveals distinct divergence of Aloe vera (L.) Burm. F. From other aloe species: rationale behind selective preference of Aloe vera in nutritional and therapeutic use. J Evid Based Complement Alternat Med 22(4):624–631. https://doi.org/10.1177/2156587217698292
Article
CAS
Google Scholar
Mariappan V, Shanthi G (2012) Antimicrobial and phytochemical analysis of Aloe vera L. Int Res J Pharm 3(10):158–161
Google Scholar
Ranghoo-Sanmukhiya M, Govinden-Soulange J, Lavergne C, Khoyratty S, Da Silva D, Frederich M, Kodja H (2010) Molecular biology, phytochemistry and bioactivity of three endemic Aloe species from Mauritius and Réunion islands. Phytochem Anal 21(6):566–574. https://doi.org/10.1002/pca.1234
Article
CAS
PubMed
Google Scholar
Kumar S, Yadav A, Yadav M, Yadav JP (2017) Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm. f. BMC Res Notes 10(1):1–12
Article
CAS
Google Scholar
Arunkumar S, Muthuselvam M (2009) Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L against clinical pathogens. World J Agric Sci 5(5):572–576
CAS
Google Scholar
Sathyaprabha G, Kumaravel S, Ruffina D, Praveenkumar P (2010) A comparative study on antioxidant, proximate analysis, antimicrobial activity and phytochemical analysis of Aloe vera and Cissus quadrangularis by GC-MS. J Pharm Res 3(12):2970–2973
CAS
Google Scholar
Karpagam T, Sugunabai J, Gomathi S, Muhamad N (2019) Phytochemical study in ethanolic leaves extract of Aloe vera using Gas chromatography. Int J Pharm Sci Res 10(2):1470–1473
Article
CAS
Google Scholar
Raphael E (2012) Phytochemical constituents of some leaves extract of Aloe vera and Azadirachta indica plant species. Global Advanced Research Journal of Environmental Science and Toxicology 1(2):014–017
Google Scholar
López A, De Tangil MS, Vega-Orellana O, Ramírez AS, Rico M (2013) Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. f. (syn. A. barbadensis Mill.) from the Canary Islands (Spain). Molecules 18(5):4942–4954. https://doi.org/10.3390/molecules18054942
Article
CAS
PubMed
PubMed Central
Google Scholar
Debnath T, Ghosh M, Lee YM, Nath NC, Lee KG, Lim BO (2018) Identification of phenolic constituents and antioxidant activity of Aloe barbadensis flower extracts. Food Agric Immunol 29(1):27–38
Article
CAS
Google Scholar
Keyhanian S, Stahl-Biskup E (2007) Phenolic constituents in dried flowers of Aloe vera (Aloe barbadensis) and their in vitro antioxidative capacity. Planta Med 73(6):599–602. https://doi.org/10.1055/s-2007-967202
Article
CAS
PubMed
Google Scholar
Patel DK, Patel K, Dhanabal SP (2012) Phytochemical standardization of Aloe vera extract by HPTLC techniques. J Acute Dis 1(1):47–50
Article
Google Scholar
Yang QY, Yao CS, Fang WS (2010) A new triglucosylated naphthalene glycoside from Aloe vera L. Fitoterapia 81(1):59–62. https://doi.org/10.1016/j.fitote.2009.07.006
Article
CAS
PubMed
Google Scholar
Reynolds T (1985) Observations on the phytochemistry of the Aloe leaf-exudate compounds. Bot J Linn Soc 90:175–199
Google Scholar
Wu X, Ding W, Zhong J, Wan J, Xie Z (2013) Simultaneous qualitative and quantitative determination of phenolic compounds in Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight and high-performance liquid chromatography-diode array detector. J Pharm Biomed Anal 80:94–106. https://doi.org/10.1016/j.jpba.2013.02.034
Article
CAS
PubMed
Google Scholar
Cardarelli M, Rouphael Y, Pellizzoni M, Colla G, Lucini L (2017) Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Ind Crop Prod 108:44–51. https://doi.org/10.1016/j.indcrop.2017.06.017
Article
CAS
Google Scholar
Kedarnath NK, Surekha RS, Mahantesh SP, Patil CS (2012) Phytochemical screening and antimicrobial activity of Aloe vera. World Res J Med Aromat Plants 1(1):11–13
Google Scholar
Bawankar R, Deepti VC, Singh P, Subashkumar R, Vivekanandhan G, Babu S (2013) Evaluation of bioactive potential of an Aloe vera sterol extract. Phytother Res 27(6):864–868. https://doi.org/10.1002/ptr.4827
Article
CAS
PubMed
Google Scholar
Okamura N, Hine N, Tateyama Y, Nakazawa M, Fujioka T, Mihashi K, Yagi A (1998) Five chromones from Aloe vera leaves. Phytochemistry 49(1):219–223
Article
CAS
Google Scholar
Tanaka M, Misawa E, Ito Y, Habara N, Nomaguchi K, Yamada M, Toida T, Hayasawa H, Takase M, Inagaki M, Higuchi R (2006) Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds. Biol Pharm Bull 29(7):1418–1422. https://doi.org/10.1248/bpb.29.1418
Article
CAS
PubMed
Google Scholar
Esua MF, Rauwald JW (2006) Novel bioactive maloyl glucans from Aloe vera gel: isolation, structure elucidation and in vitro bioassays. Carbohydr Res 341(3):355–364. https://doi.org/10.1016/j.carres.2005.11.022
Article
CAS
PubMed
Google Scholar
Lawrence R, Tripathi P, Jeyakumar E (2009) Isolation, purification and evaluation of antibacterial agents from Aloe vera. Braz J Microbiol 40(4):906–915. https://doi.org/10.1590/S1517-83822009000400023
Article
CAS
PubMed
PubMed Central
Google Scholar
Nejatzadeh-Barandozi F (2013) Antibacterial activities and antioxidant capacity of Aloe vera. Org Med Chem Lett 3(1):1–8
Article
CAS
Google Scholar
Vázquez B, Avila G, Segura D, Escalante B (1996) Anti-inflammatory activity of extracts from Aloe vera gel. J Ethnopharmacol 55(1):69–75. https://doi.org/10.1016/S0378-8741(96)01476-6
Article
PubMed
Google Scholar
Kammoun M, Miladi S, Ali YB, Damak M, Gargouri Y, Bezzine S (2011) In vitro study of the PLA2 inhibition and antioxidant activities of Aloe vera leaf skin extracts. Lipids Health Dis 10(1):1–7
Article
Google Scholar
Zhong J, Huang Y, Ding W, Wu X, Wan J, Luo H (2013) Chemical constituents of Aloe barbadensis Miller and their inhibitory effects on phosphodiesterase-4D. Fitoterapia 91:159–165. https://doi.org/10.1016/j.fitote.2013.08.027
Article
CAS
PubMed
Google Scholar
Rehman NU, Al-Riyami SA, Hussain H, Ali A, Khan AL, Al-Harrasi A (2019) Secondary metabolites from the resins of Aloe vera and Commiphora mukul mitigate lipid peroxidation. Acta Pharma 69(3):433–441. https://doi.org/10.2478/acph-2019-0027
Article
CAS
Google Scholar
Rehman NU, Hussain H, Khiat M, Al-Riyami SA, Csuk R, Khan HY, Abbas G, Al-Thani GS, Green IR, Al-Harrasi A (2016) Aloeverasides A and B: two bioactive C-Glucosyl chromones from Aloe vera resin. Helv Chim Acta 99(9):687–690. https://doi.org/10.1002/hlca.201600126
Article
CAS
Google Scholar
Kambizi L, Sultana N, Afolayan AJ (2005) Bioactive compounds isolated from Aloe ferox: A plant traditionally used for the treatment of sexually transmitted infections in the Eastern Cape, South Africa. Pharm Biol 42(8):636–639. https://doi.org/10.1080/13880200490902581
Article
CAS
Google Scholar
Wintola OA, Afolayan AJ (2011) Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill. Pharmacogn Mag 7(28):325–333. https://doi.org/10.4103/0973-1296.90414
Article
CAS
PubMed
PubMed Central
Google Scholar
Fawole OA, Amoo SO, Ndhlala AR, Light ME, Finnie JF, Van Staden J (2010) Anti-inflammatory, anticholinesterase, antioxidant and phytochemical properties of medicinal plants used for pain-related ailments in South Africa. J Ethnopharmacol 127(2):235–241. https://doi.org/10.1016/j.jep.2009.11.015
Article
CAS
PubMed
Google Scholar
Koyama J, Ogura T, Tagahara K (1994) Naphtho [2, 3-c] furan-4, 9-dione and its derivatives from Aloe ferox. Phytochemistry 37(4):1147–1148. https://doi.org/10.1016/S0031-9422(00)89546-1
Article
CAS
Google Scholar
Celestino VR, Maranhão HM, Vasconcelos CF, Lima CR, Medeiros GC, Araújo AV, Wanderley AG (2013) Acute toxicity and laxative activity of Aloe ferox resin. Rev Bras 23(2):279–283. https://doi.org/10.1590/S0102-695X2013005000009
Article
CAS
Google Scholar
Magwa ML, Gundidza M, Coopoosamy RM, Mayekiso B (2006) Chemical composition of volatile constituents from the leaves of Aloe ferox. Afr J Biotechnol 5(18):1652–1654
CAS
Google Scholar
Kametani S, Kojima-Yuasa A, Kikuzaki H, Kennedy DO, Honzawa M, Matsui-Yuasa I (2007) Chemical constituents of cape aloe and their synergistic growth-inhibiting effect on Ehrlich ascites tumor cells. Biosci Biotechnol Biochem 71(5):1220–1229 https://doi.org/10.1271/bbb.60659
Article
CAS
PubMed
Google Scholar
Arowosegbe S, Wintola OA, Afolayan AJ (2012) Phytochemical constituents and allelopathic effect of Aloe ferox Mill. root extract on tomato. J Med Plant Res 6(11):2094–2099
Google Scholar
Loots DT, van der Westhuizen FH, Botes L (2007) Aloe ferox leaf gel phytochemical content, antioxidant capacity, and possible health benefits. J Agric Food Chem 55(17):6891–6896. https://doi.org/10.1021/jf071110t
Article
CAS
Google Scholar
Saritha V, Anilakumar KR (2010) Toxicological evaluation of methanol extract of Aloe vera in rats. Int J Pharmaceut Biomed Res 1(5):142–149
Google Scholar
Tanaka M, Yamada M, Toida T, Iwatsuki K (2012) Safety evaluation of supercritical carbon dioxide extract of Aloe vera gel. J Food Sci 77(1):T2–T9. https://doi.org/10.1111/j.1750-3841.2011.02452.x
Article
CAS
PubMed
Google Scholar
Sehgal I, Winters WD, Scott M, David A, Gillis G, Stoufflet T, Nair A, Kousoulas K (2013) Toxicologic assessment of a commercial decolorized whole leaf Aloe vera juice, lily of the desert filtered whole leaf juice with aloesorb. J Toxicol 2013:1–12. https://doi.org/10.1155/2013/802453
Article
Google Scholar
Mwale M, Masika PJ (2012) Toxicological studies on the leaf extract of Aloe ferox Mill. (Aloaceae). Sci Res Essays 7(15):1605–1613
Google Scholar
Devaraj A, Karpagam T (2011) Evaluation of anti-inflammatory activity and analgesic effect of Aloe vera leaf extract in rats. Int Res J Pharm 2(3):103–110
Google Scholar
Erhabor JO, Idu M (2017) Aphrodisiac potentials of the ethanol extract of Aloe barbadensis Mill. root in male Wistar rats. BMC Complement Altern Med 17(1):1–10
Article
CAS
Google Scholar
Abosede WO, Sunday JAA (2015) Toxicological investigations of Aloe ferox Mill extracts using Brine shrimp (Artemia salina L.) assay. Pak J Pharm Sci 28(2):635–640
PubMed
Google Scholar
Hamidi MR, Jovanova B, Panovska TK (2014) Toxicоlogical evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Maced Pharm Bull 60(1):9–18
Article
Google Scholar
Nghonjuyi NW, Tiambo CK, Taïwe GS, Toukala JP, Lisita F, Juliano RS, Kimbi HK (2016) Acute and sub-chronic toxicity studies of three plants used in Cameroonian ethnoveterinary medicine: Aloe vera (L.) Burm. f. (Xanthorrhoeaceae) leaves, Carica papaya L. (Caricaceae) seeds or leaves, and Mimosa pudica L. (Fabaceae) leaves in Kabir chicks. J Ethnopharmacol 178:40–49. https://doi.org/10.1016/j.jep.2015.11.049
Article
PubMed
Google Scholar
Shah AH, Qureshi S, Tariq M, Ageel AM (1989) Toxicity studies on six plants used in the traditional Arab system of medicine. Phytother Res 3(1):25–29. https://doi.org/10.1002/ptr.2650030107
Article
Google Scholar
Ghosh AK, Banerjee M, Mandal TK, Mishra A, Bhowmik MK (2011) A study on analgesic efficacy and adverse effects of Aloe vera in Wistar rats. Pharmacologyonline 1:1098–1108
Google Scholar
Yimam M, Brownell L, Jia Q (2014) In vivo safety evaluation of UP780, a standardized composition of aloe chromone aloesin formulated with an Aloe vera inner leaf fillet. Regul Toxicol Pharmacol 69(3):390–397. https://doi.org/10.1016/j.yrtph.2014.05.001
Article
CAS
PubMed
Google Scholar
Wintola OA, Sunmonu TO, Afolayan AJ (2011) Toxicological evaluation of aqueous extract of Aloe ferox Mill in loperamide-induced constipated rats. Hum Exp Toxicol 30(5):425–431. https://doi.org/10.1177/0960327110372647
Article
CAS
PubMed
Google Scholar
Kwack SJ, Do SG, Kim YW, Kim YJ, Gwak HM, Park HJ, Roh T, Shin MK, Lim SK, Kim HS, Lee BM (2014) The No-Observed-Adverse-Effect Level (NOAEL) of Baby Aloe Powder (BAP) for nutraceutical application based upon toxicological evaluation. J Toxicol Environ Health, Part A 77(22-24):1319–1331. https://doi.org/10.1080/15287394.2014.951590
Article
CAS
Google Scholar
Koroye OC, Siminialayi IM, Etebu EN (2010) Effects of oral administration of Aloe vera plus on the heart and kidney: a subacute toxicity study in rat models. Nigerian Health Journal 10(1-2):17–21
Google Scholar
Sodani IJ (2015) Histopathological changes of male mice kidneys treated with fresh Aloe vera whole leaf extract. Iraqi J Med Sci 13(2):160–166
Google Scholar
Sudhakar P, Prabhu VV, Jamuna B, Adithya RS, Joy A, Anand R (2018) Preclinical toxicological evaluation of Aloe vera health drinks in Wistar rats. Intern J Res Pharm Sci &Technol 1(1):27–32. https://doi.org/10.33974/ijrpst.v1i1.33
Article
Google Scholar
Chen T, Wang L, Hu C (2017) Treatment-related changes after short-term exposure of SD rats to Aloe vera whole-leaf freeze-dried powder. Int J Exp Pathol 98(5):248–259. https://doi.org/10.1111/iep.12242
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahbab MA, Korkmaz A, Barlas N, Gürbüz I, Çok I (2014) Biochemical and histological alterations in reproductive tract tissues of male swiss albino mice exposed commercially prepared Aloe vera gel product. Hacettepe J Biol Chem 42:351–360
Google Scholar
Bala S, Chugh NA, Bansal SC, Garg ML, Koul A (2017) Safety evaluation of Aloe vera pulp aqueous extract based on histoarchitectural and biochemical alterations in mice. Indian J Exp Biol 55:568–575
CAS
Google Scholar
Shao A, Broadmeadow A, Goddard G, Bejar E, Frankos V (2013) Safety of purified decolorized (low anthraquinone) whole leaf Aloe vera (L) Burm. whole leaf juice in a 3-month drinking water toxicity study in F344 rats. Food Chem Toxicol 57:21–31. https://doi.org/10.1016/j.fct.2013.03.002
Article
CAS
PubMed
Google Scholar
Williams LD, Burdock GA, Shin E, Kim S, Jo TH, Jones KN, Matulka RA (2010) Safety studies conducted on a proprietary high-purity Aloe vera inner leaf fillet preparation, Qmatrix®. Regul Toxicol Pharmacol 57(1):90–98. https://doi.org/10.1016/j.yrtph.2010.01.002
Article
CAS
PubMed
Google Scholar
Boudreau MD, Beland FA, Nichols JA, Pogribna M (2013) Toxicology and carcinogenesis studies of a non-decolorized whole leaf extract of Aloe barbadensis Miller (Aloe vera) in F344/N rats and B6C3F1 mice (drinking water study). Toxicol Sci 577:1–266
Akao T, Che Q, Kobashi Q (1996) A purgative action of barbaloin is induced by Eubacterium sp. strain BAR, a human intestinal anaerobe, capable of transforming barbaloin to aloe-emodinanthrone. Biol Pharm Bull 19(1):136–138. https://doi.org/10.1248/bpb.19.136
Article
CAS
PubMed
Google Scholar
Boudreau MD, Olson GR, Tryndyak VP, Bryant MS, Felton RP, Beland FA (2017) From the cover: aloin, a component of the Aloe vera plant leaf, induces pathological changes and modulates the composition of microbiota in the large intestines of F344/N male rats. Toxicol Sci 158(2):302–318. https://doi.org/10.1093/toxsci/kfx105
Article
CAS
PubMed
PubMed Central
Google Scholar
Quan Y, Gong L, He J, Zhou Y, Liu M, Cao Z, Li Y, Peng C (2019) Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicol Lett 306:66–79. https://doi.org/10.1016/j.toxlet.2019.02.007
Article
CAS
PubMed
Google Scholar
Dong X, Fu J, Yin X, Yang C, Ni J (2017) Aloe-emodin induces apoptosis in human liver HL-7702 cells through Fas death pathway and the mitochondrial pathway by generating reactive oxygen species. Phytother Res 31(6):927–936. https://doi.org/10.1002/ptr.5820
Article
CAS
PubMed
Google Scholar
Panigrahi GK, Ch R, Mudiam MK, Vashishtha VM, Raisuddin S, Das M (2015) Activity-guided chemo toxic profiling of Cassia occidentalis (CO) seeds: Detection of toxic compounds in body fluids of CO-exposed patients and experimental rats. Chem Res Toxicol 28(6):1120–1132. https://doi.org/10.1021/acs.chemrestox.5b00056
Article
CAS
PubMed
Google Scholar
Nesslany F, Simar-Meintières S, Ficheux H, Marzin D (2009) Aloe-emodin-induced DNA fragmentation in the mouse in vivo comet assay. Mutat Res Genet Toxicol Environ Mutagen 678(1):13–19. https://doi.org/10.1016/j.mrgentox.2009.06.004
Article
CAS
Google Scholar
Vath P, Wamer WG, Falvey DE (2002) Photochemistry and phototoxicity of aloe emodin. Photochem Photobiol 75(4):346–352. https://doi.org/10.1562/0031-8655(2002)0750346PAPOAE2.0.CO2
Article
CAS
PubMed
Google Scholar
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 10(5):766–788. https://doi.org/10.1016/j.apsb.2020.02.008
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280
Article
CAS
PubMed
PubMed Central
Google Scholar
Adeleye OA, Femi-Oyewo MN, Bamiro OA, Bakre LG, Alabi A, Ashidi JS, Balogun-Agbaje OA, Hassan OM, Fakoya G (2021) Ethnomedicinal herbs in African traditional medicine with potential activity for the prevention, treatment, and management of coronavirus disease 2019. Future J Pharm Sci 7(1):1–4
Article
Google Scholar
Azer SA (2020) COVID-19: Pathophysiology, diagnosis, complications and Investigational therapeutics. New Microbes New Infect 37:100738 https://doi.org/10.1016/j.nmni.2020.100738
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar M, Al Khodor S (2020) Pathophysiology and treatment strategies for COVID-19. J Transl Med 18(1):1–9
Article
CAS
Google Scholar
Ntyonga-Pono MP (2020) COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment? Pan Afr Med J 35(Suppl 2):12. https://doi.org/10.11604/pamj.2020.35.2.22877
Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S, Chufang L, Jin Z, Zhenhua J, Haiming J, Kui Z (2020) Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res 156:104761 https://doi.org/10.1016/j.phrs.2020.104761
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossato L, Negrão FJ, Simionatto S (2020) Could the COVID-19 pandemic aggravate antimicrobial resistance. Am J Infect Control 48(9):1129–1130. https://doi.org/10.1016/j.ajic.2020.06.192https://doi.org/10.1016/j.ajic.2020.06.192
Article
PubMed
PubMed Central
Google Scholar
Mpiana PT, Tshibangu DS, Kilembe JT, Gbolo BZ, Mwanangombo DT, Inkoto CL, Lengbiye EM, Mbadiko CM, Matondo A, Bongo GN, Tshilanda DD (2020) Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: a molecular docking study. Chem Phys Lett 754:137751 https://doi.org/10.1016/j.cplett.2020.137751
Article
CAS
PubMed
PubMed Central
Google Scholar
Vijayalakshmi D, Dhandapani R, Jayaveni S, Jithendra PS, Rose C, Mandal AB (2012) In vitro anti-inflammatory activity of Aloe vera by down regulation of MMP-9 in peripheral blood mononuclear cells. J Ethnopharmacol 141(1):542–546. https://doi.org/10.1016/j.jep.2012.02.040
Article
CAS
PubMed
Google Scholar
Egesie UG, Chima KE, Galam NZ (2011) Anti-inflammatory and analgesic effects of aqueous extract of Aloe vera (Aloe barbadensis) in rats. Afr J Biomed Res 14(3):209–212
Google Scholar
Langmead L, Makins RJ, Rampton DS (2004) Anti-inflammatory effects of Aloe vera gel in human colorectal mucosa in vitro. Aliment Pharmacol Ther 19(5):521–527. https://doi.org/10.1111/j.1365-2036.2004.01874.x
Article
CAS
PubMed
Google Scholar
Davis RH, Donato JJ, Hartman GM, Haas RC (1994) Anti-inflammatory and wound healing activity of a growth substance in Aloe vera. J Am Podiatr Med Assoc 84(2):77–81. https://doi.org/10.7547/87507315-84-2-77
Article
CAS
PubMed
Google Scholar
Udupa SL, Udupa AL, Kulkarni DR (1994) Anti-inflammatory and wound healing properties of Aloe vera. Fitoterapia 65(2):141–145
Google Scholar
Davis RH, Leitner MG, Russo JM, Byrne ME (1989) Anti-inflammatory activity of Aloe vera against a spectrum of irritants. J Am Podiatr Med Assoc 79(6):263–276. https://doi.org/10.7547/87507315-79-6-263
Article
CAS
PubMed
Google Scholar
López Z, Femenia A, Núñez-Jinez G, Salazar Zúñiga MN, Cano ME, Espino T, Knauth P (2019) In vitro immunomodulatory effect of food supplement from Aloe vera. Evid Based Complement Alternat Med 2019:1–9 https://doi.org/10.1155/2019/5961742
Article
Google Scholar
Farahnejad Z, Ghazanfari T, Yaraee R (2011) Immunomodulatory effects of Aloe vera and its fractions on response of macrophages against Candida albicans. Immunopharmacol Immunotoxicol 33(4):676–681. https://doi.org/10.3109/08923973.2011.560158
Article
PubMed
Google Scholar
Chandu AC, Kumar S, Bhattacharjee C, Debnath S, Kannan KK (2011) Studies on immunomodulatory activity of Aloe vera (Linn). Int J Appl Biol Pharm Technol 2:19–22
Google Scholar
Madan J, Sharma AK, Inamdar N, Rao HS, Singh R (2008) Immunomodulatory properties of Aloe vera gel in mice. Intern J Green Pharm 2(3):151–154
Google Scholar
Khan SL, Siddiqui FA (2020) Beta-Sitosterol: As Immunostimulant, Antioxidant and Inhibitor of SARS-CoV-2 Spike Glycoprotein. Arch Pharmacol Ther 2(1):12–16
Google Scholar
Te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (2010) Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 6(11):e1001176 https://doi.org/10.1371/journal.ppat.1001176
Article
CAS
Google Scholar
Abouelela ME, Assaf HK, Abdelhamid RA, Elkhyat ES, Sayed AM, Oszako T, Belbahri L, Zowalaty AE, Abdelkader MS (2021) Identification of potential SARS-CoV-2 main protease and spike protein inhibitors from the Genus Aloe: an in silico study for drug development. Molecules 26(6):1767. https://doi.org/10.3390/molecules26061767
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong WY, Kim K (2017) Anti-Propionibacterium acnes and the anti-inflammatory effect of Aloe ferox miller components. J Herb Med 9:53–59 https://doi.org/10.1016/j.hermed.2017.03.009
Article
Google Scholar
Mwale M, Masika PJ (2010) Analgesic and anti-inflammatory activities of Aloe ferox Mill. aqueous extract. Afr J Pharm Pharmacol 4(6):291–297
Google Scholar