Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 109:102433. https://doi.org/10.1016/j.jaut.2020.102433
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemp SA, Collier DA, Datir RP, Ferreira IATM, Gayed S, Jahun A, Hosmillo M, Rees-Spear C, Mlcochova P, Lumb IU, Roberts DJ, Chandra A, Temperton N, Collaboration TC-NBC-19, Consortium TC-19 GU (COG-U), Sharrocks K, Blane E, Modis Y, Leigh KE, Briggs JAG, Gils MJV, Smith KGC, Bradley JR, Smith C, Doffinger R, Ceron-Gutierrez L, Barcenas-Morales G, Pollock DD, Goldstein RA, Smielewska A, Skittrall JP, Gouliouris T, Goodfellow IG, Gkrania-Klotsas E, Illingworth CJR, McCoy LE, Gupta RK (2021) SARS-CoV-2 evolution during treatment of chronic infection. Nature 592(7853):277–282. https://doi.org/10.1038/s41586-021-03291-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrido I, Liberal R, Macedo G (2020) Review article: COVID-19 and liver disease—what we know on 1st May 2020. Aliment Pharmacol Ther 52(2):267–275. https://doi.org/10.1111/apt.15813
Article
CAS
PubMed
Google Scholar
WHO (2020) Coronavirus disease (COVID-19) situation report—138. https://www.who.int/publications/m/item/situation-report---138. Accessed 9 June 2020
Bzówka M, Mitusińska K, Raczyńska A, Samol A, Tuszyński JA, Góra A (2020) Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. Int J Mol Sci 21(9):3099. https://doi.org/10.3390/ijms21093099
Article
CAS
PubMed Central
Google Scholar
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293. https://doi.org/10.1038/s41586-020-2223-y
Article
CAS
PubMed
Google Scholar
Tu Y (2016) Artemisinin—a gift from traditional Chinese medicine to the world (Nobel Lecture). Angew Chemie Int Ed 55(35):10210–10226. https://doi.org/10.1002/anie.201601967
Article
CAS
Google Scholar
Darakhshan S, Pour AB, Colagar AH, Sisakhtnezhad S (2015) Thymoquinone and its therapeutic potentials. Pharmacol Res 95–96:138–158. https://doi.org/10.1016/j.phrs.2015.03.011
Article
CAS
PubMed
Google Scholar
Rezaei N, Sardarzadeh T, Sisakhtnezhad S (2020) Thymoquinone promotes mouse mesenchymal stem cells migration in vitro and induces their immunogenicity in vivo. Toxicol Appl Pharmacol 387:114851. https://doi.org/10.1016/j.taap.2019.114851
Article
CAS
PubMed
Google Scholar
Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW (2020) Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn 39(12):4225–4233. https://doi.org/10.1080/07391102.2020.1775129
Article
CAS
PubMed
Google Scholar
Kadil Y, Mouhcine M, Filali H (2021) In silico investigation of the SARS CoV2 protease with thymoquinone, the major constituent of Nigella sativa. Curr Drug Discov Technol 18(4):570–573. https://doi.org/10.2174/1570163817666200712164406
Article
CAS
PubMed
Google Scholar
Yang YM, Chen LN, Qu SQ, Deng SQ, Liu H, Wang X, Weng XG, Wang YJ, Zhu XX, Li YJ (2020) Potential therapies for COVID-19 cardiovascular complications using artemisinin and its derivatives intervene based on its cardiovascular protection. China J Chin Mater Med 45(24):6053–6064. https://doi.org/10.19540/j.cnki.cjcmm.20200828.601
Article
Google Scholar
Badary OA, Al-Shabanah OA, Nagi MN, Al-Bekairi AM, Elmazar MMA (1998) Acute and subchronic toxicity of thymoquinone in mice. Drug Dev Res 44(2–3):56–61. https://doi.org/10.1002/(SICI)1098-2299(199806/07)44:2/3<56::AID-DDR2>3.0.CO;2-9
Article
Google Scholar
Efferth T, Kaina B (2010) Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol 40(5):405–421. https://doi.org/10.3109/10408441003610571
Article
CAS
PubMed
Google Scholar
Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJG, Marschall M (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47(6):804–811. https://doi.org/10.1086/591195
Article
CAS
PubMed
Google Scholar
Karagöz AÇ, Reiter C, Seo E-J, Gruber L, Hahn F, Berger ML, Klein V, Hampel F, Friedrich O, Marschall M, Kappes B, Efferth T, Tsogoeva SB (2018) Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and artemisinin. Bioorg Med Chem 26(12):3610–3618. https://doi.org/10.1016/j.bmc.2018.05.041
Article
CAS
Google Scholar
Fröhlich T, Reiter C, Saeed MEM, Hutterer C, Hahn F, Leidenberger M, Friedrich O, Kappes B, Marschall M, Efferth T, Tsogoeva SB (2018) Synthesis of thymoquinone–artemisinin hybrids: new potent antileukemia, antiviral, and antimalarial agents. ACS Med Chem Lett 9(6):534–539. https://doi.org/10.1021/acsmedchemlett.7b00412
Article
CAS
PubMed
Google Scholar
DeLano WL (2002) Pymol: an open-source molecular graphics tool. In: CCP4 newsletter on protein crystallography. http://www.ccp4.ac.uk/newsletters/newsletter36.pdf. Accessed 6 June 2020
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084
Article
CAS
Google Scholar
Huey R, Morris GM, Forli S (2012) Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. In: The Scripps Research Institute, Molecular Graphics Laboratory. https://www.researchgate.net/profile/Vasanthan-Vasudevan-2/post/Auto-grid-generation-in-Autodock-tool-for-docking/attachment/59d6223fc49f478072e98d56/AS%3A272113926115328%401441888423193/download/example.zip. Accessed 5 June 2020
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):1–17. https://doi.org/10.1186/1758-2946-4-17
Article
CAS
Google Scholar
Biovia DS, Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Richmond TJ (2000) Dassault systèmes BIOVIA, discovery studio visualizer, v. 17.2, San Diego: Dassault Systèmes, 2016. J Chem Phys 10:21–9991
Google Scholar
Csizmadia P (1999) MarvinSketch and MarvinView: molecule applets for the World Wide Web. MDPI. https://doi.org/10.3390/ecsoc-3-01775
Article
Google Scholar
Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A (2020) Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs 18(4):225. https://doi.org/10.3390/md18040225
Article
CAS
PubMed Central
Google Scholar
Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
Article
CAS
Google Scholar
Sant’Anna CMR (2009) Molecular modeling methods in the study and design of bioactive compounds: an introduction. Rev Virtual Química 1(1):49–57. https://doi.org/10.5935/1984-6835.20090007
Article
Google Scholar
Gaillard T (2018) Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. J Chem Inf Model 58(8):1697–1706. https://doi.org/10.1021/acs.jcim.8b00312
Article
CAS
PubMed
Google Scholar
Almeida-Neto FWQ, Matos MGC, Marinho EM, Marinho MM, de Menezes RRPPB, Sampaio TL, Bandeira PN, Fernandes CFC, Teixeira AMR, Marinho ES, de Lima-Neto P, dos Santos HS (2021) In silico study of the potential interactions of 4′-acetamidechalcones with protein targets in SARS-CoV-2. Biochem Biophys Res Commun 537:71–77. https://doi.org/10.1016/j.bbrc.2020.12.074
Article
CAS
Google Scholar
Shityakov S, Förster C (2014) In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Adv Appl Bioinforma Chem AABC 7:23–36. https://doi.org/10.2147/AABC.S63749
Article
Google Scholar
Marinho EM, de Neto JB, A, Silva J, Silva CR da, Cavalcanti BC, Marinho ES, Júnior HVN, (2020) Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microb Pathog 148:104365. https://doi.org/10.1016/j.micpath.2020.104365
Article
CAS
PubMed
PubMed Central
Google Scholar
Yusuf D, Davis AM, Kleywegt GJ, Schmitt S (2008) An alternative method for the evaluation of docking performance: RSR versus RMSD. J Chem Inf Model 48(7):1411–1422. https://doi.org/10.1021/ci800084x
Article
CAS
PubMed
Google Scholar
Rashid M (2020) Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorg Chem 96:103576. https://doi.org/10.1016/j.bioorg.2020.103576
Article
CAS
PubMed
Google Scholar
Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Article
CAS
PubMed
Google Scholar
Khan MF, Nahar N, Rashid RB, Chowdhury A, Rashid MA (2018) Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). BMC Complement Altern Med 18(1):48. https://doi.org/10.1186/s12906-018-2116-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt S, Gonzalez D, Derendorf H (2010) Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci 99(3):1107–1122. https://doi.org/10.1002/jps.21916
Article
CAS
PubMed
Google Scholar
Gold LS, Slone TH, Manley NB, Garfinkel GB, Hudes ES, Rohrbach L, Ames BN (1991) The Carcinogenic Potency Database: analyses of 4000 chronic animal cancer experiments published in the general literature and by the U.S. National Cancer Institute/National Toxicology Program. Environ Health Perspect 96:11–15. https://doi.org/10.1289/ehp.919611
Article
CAS
PubMed
PubMed Central
Google Scholar
Imberty A, Hardman KD, Carver JP, Perez S (1991) Molecular modelling of protein-carbohydrate interactions: docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1(6):631–642. https://doi.org/10.1093/glycob/1.6.631
Article
CAS
PubMed
Google Scholar
Wager TT, Hou X, Verhoest PR, Villalobos A (2016) Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem Neurosci 7(6):767–775. https://doi.org/10.1021/acschemneuro.6b00029
Article
CAS
PubMed
Google Scholar
Sevin E, Dehouck L, da Costa AF, Cecchelli R, Dehouck MP, Lundquist S, Culot M (2013) Accelerated Caco-2 cell permeability model for drug discovery. J Pharmacol Toxicol Methods 68(3):334–339. https://doi.org/10.1016/j.vascn.2013.07.004
Article
CAS
PubMed
Google Scholar
Maurya SK, Maurya AK, Mishra N, Siddique HR (2020) Virtual screening, ADME/T, and binding free energy analysis of anti-viral, anti-protease, and anti-infectious compounds against NSP10/NSP16 methyltransferase and main protease of SARS CoV-2. J Recept Signal Transduct 40(6):605–612. https://doi.org/10.1080/10799893.2020.1772298
Article
CAS
Google Scholar
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S (2020) Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors—an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn 39(12):4362–4374. https://doi.org/10.1080/07391102.2020.1779818
Article
CAS
PubMed
Google Scholar
Gao J, Tian Z, Yang X (2020) Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 14(1):72–73. https://doi.org/10.5582/bst.2020.01047
Article
CAS
Google Scholar
Li C, Zhu X, Ji X, Quanquin N, Deng YQ, Tian M, Aliyari R, Zuo X, Yuan L, Afridi SK, Li XF, Jung JU, Nielsen-Saines K, Qin FXF, Qin CF, Xu Z, Cheng G (2017) Chloroquine, a FDA-approved drug, prevents Zika virus infection and its associated congenital microcephaly in mice. EBioMedicine 24:189–194. https://doi.org/10.1016/j.ebiom.2017.09.034
Article
PubMed
PubMed Central
Google Scholar
Peymani P, Yeganeh B, Sabour S, Geramizadeh B, Fattahi MR, Keyvani H, Azarpira N, Coombs KM, Ghavami S, Lankarani KB (2016) New use of an old drug: chloroquine reduces viral and ALT levels in HCV non-responders (a randomized, triple-blind, placebo-controlled pilot trial). Can J Physiol Pharmacol 94(6):613–619. https://doi.org/10.1139/cjpp-2015-0507
Article
CAS
PubMed
Google Scholar
Chatre C, Roubille F, Vernhet H, Jorgensen C, Pers YM (2018) Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature. Drug Saf 41(10):919–931. https://doi.org/10.1007/s40264-018-0689-4
Article
CAS
PubMed
Google Scholar
Kamp TJ, Hamdan MH, January CT (2020) Chloroquine or hydroxychloroquine for COVID-19: is cardiotoxicity a concern? J Am Heart Assoc 9(12):e016887. https://doi.org/10.1161/jaha.120.016887
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Choudhir G, Shukla SK, Sharma M, Tyagi P, Bhushan A, Rathore M (2021) Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn 39(10):3760–3770. https://doi.org/10.1080/07391102.2020.1772112
Article
CAS
PubMed
Google Scholar
Barreiro EJ, Alberto C, Fraga M (2008) Ascpectos gerais da ação dos fármacos. In: Química medicinal: as bases moleculares da ação dos fármacos, 2nd edn. Artmed, Porto Alegre, pp 19–70
Wesolowski CA, Wesolowski MJ, Babyn PS, Wanasundara SN (2016) Time varying apparent volume of distribution and drug half-lives following intravenous bolus injections. PLoS ONE 11(7):1–17. https://doi.org/10.1371/journal.pone.0158798
Article
CAS
Google Scholar
Lobell M, Molnár L, Keserü GM (2003) Recent advances in the prediction of blood–brain partitioning from molecular structure. J Pharm Sci 92(2):360–370. https://doi.org/10.1002/jps.10282
Article
PubMed
Google Scholar
Yee S (1997) In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm Res 14(6):763–766. https://doi.org/10.1023/A:1012102522787
Article
CAS
PubMed
Google Scholar
Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res 15(9):1490–1494. https://doi.org/10.1023/A:1011930411574
Article
CAS
PubMed
Google Scholar
Whalen K, Finkel R, Panavelil TA (2016) Princípios da terapia farmacológica. In: Farmacologia ilustrada, 6th edn. Artmed, Porto Alegre, pp 1–37
Louet M, Labbé CM, Fagnen C, Aono CM, Homem-de-Mello P, Villoutreix BO, Miteva MA (2018) Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9* 30. PLoS ONE 15(3):e0197249. https://doi.org/10.1371/journal.pone.0197249
Article
CAS
Google Scholar
Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 104(9):3947–3980. https://doi.org/10.1021/cr020443g
Article
CAS
PubMed
Google Scholar
Blum AP, Lester HA, Dougherty DA (2010) Nicotinic pharmacophore: the pyridine N of nicotine and carbonyl of acetylcholine hydrogen bond across a subunit interface to a backbone NH. Proc Natl Acad Sci 107(30):13206–13211. https://doi.org/10.1073/pnas.1007140107
Article
PubMed
PubMed Central
Google Scholar