Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492
Article
PubMed
Google Scholar
World Health Organization (WHO) (2020) Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. WHO; 2020. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. Accessed 11 Dec 2020
World Cancer Report 2014 (2014) World Health Organization (WHO). Chapter 1.1. ISBN 9283204298.
IARC (2011) Cancer Incidence and Mortality Worlwide; International Agency for Research on Cancer: Lyon, France
WHO, Global Status Report on Noncommunicable Diseases (2010) WT 500; WHO: Geneva, Switzerland
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210
Article
CAS
PubMed
Google Scholar
Anwar MA, Kheir WA, Eid S, Fares J, Liu X, Eid AH, Eid AA (2014) Colorectal and Prostate Cancer Risk in Diabetes: Metformin, an Actor behind the Scene. J Cancer 5(9):736–744
Article
PubMed
PubMed Central
Google Scholar
Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: Definition, mechanisms, and relevance to disease. Am J Med 107(5):489–506
Article
CAS
PubMed
Google Scholar
Wyllie AH, Bellamy CO, Bubb VJ, Clarke AR, Corbet S, Curtis L, Harrison DJ, Hooper ML, Toft N, Webb S, Bird CC (1999) Apoptosis and carcinogenesis. Br J Cancer 80(Suppl 1):34–37
PubMed
Google Scholar
Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17(9):2941–2953
Article
CAS
PubMed
Google Scholar
Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1(2):111–121
Article
CAS
PubMed
Google Scholar
Weinstein JN, Buolamwini JK (2000) Molecular targets in cancer drug discovery: cell-based profiling. Curr Pharm Des 6(4):473–483
Article
CAS
PubMed
Google Scholar
Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol 4(4):445–451
Article
CAS
PubMed
Google Scholar
Sikora K (2001) Cancer drug development in the post-genomic age. Curr Sci 81(5):549–554
CAS
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A (2021) Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
Article
PubMed
Google Scholar
Bray F, Laversanne M, Weiderpass E, Soerjomataram I (2021) The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. https://doi.org/10.1002/cncr.33587
Article
PubMed
Google Scholar
Rajesh E, Sankari LS, Malathi L, Krupaa JR (2015) Naturally occurring products in cancer therapy. J Pharm Bioallied Sci 7(Suppl 1):S181-183
CAS
PubMed
PubMed Central
Google Scholar
Ovadje P, Roma A, Steckle M, Nicoletti L, Arnason JT, Pandey S (2015) Advances in the research and development of natural health products as main stream cancer therapeutics. Evid Based Complement Alternat Med 2015:751348
Article
PubMed
PubMed Central
Google Scholar
Hail N Jr, Cortes M, Drake EN, Spallholz JE (2008) Cancer chemoprevention: a radical perspective. Free Radic Biol Med 45(2):97–110
Article
CAS
PubMed
Google Scholar
Editorial Report (2021) Advancing cancer therapy. Nat Cancer 2:245–246. https://doi.org/10.1038/s43018-021-00192-x
Hong WK, Sporn MB (1997) Recent advances in chemoprevention of cancer. Science 278(5340):1073–1077
Article
CAS
PubMed
Google Scholar
Sun SY, Hail N Jr, Lotan R (2004) Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst 96(9):662–672
Article
CAS
PubMed
Google Scholar
Sporn MB, Liby KT (2005) Cancer chemoprevention: scientific promise, clinical uncertainty. Nat Clin Pract Oncol 2(10):518–525
Article
CAS
PubMed
Google Scholar
Seyed MA, Siddiqua, (2020) A review on the therapeutic potential of nature derived cholrin photosensitizer and its synthetic counterparts for photodynamic therapy in the control of neoplastic diseases. Int J PharmaO2 2(5):0315–0327
Google Scholar
Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60(1):52–60
Article
CAS
PubMed
Google Scholar
Cragg GM, Newman DJ (1999) Discovery and development of antineoplastic agents from natural sources. Cancer Invest 17(2):153–163
Article
CAS
PubMed
Google Scholar
Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695
Article
CAS
PubMed
PubMed Central
Google Scholar
Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19–20):894–901
Article
CAS
PubMed
Google Scholar
Montaser R, Luesch H (2011) Marine natural products: a new wave of drugs? Future Med Chem 3(12):1475–1489
Article
CAS
PubMed
Google Scholar
Villa FA, Gerwick L (2010) Marine natural product drug discovery: leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol Immunotoxicol 32(2):228–237
Article
CAS
PubMed
Google Scholar
Liu Y (2012) Renaissance of marine natural product drug discovery and development. J Marine Sci Res Development 2:e106
Article
Google Scholar
Hanif N, Murni A, Tanaka C, Tanaka J (2019) Marine natural products from Indonesian waters. Mar Drugs 17(6):364. https://doi.org/10.3390/md17060364
Article
CAS
PubMed Central
Google Scholar
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2021) Marine natural products. Nat Prod Rep 38:362–413. https://doi.org/10.1039/D0NP00089B
Article
CAS
PubMed
Google Scholar
Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2012) Marine naturalproducts. Nat Prod Rep 29(2):144–222
Article
CAS
PubMed
Google Scholar
Jiménez C (2018) Marine Natural Products in Medicinal Chemistry. ACS Med Chem Lett 9(10):959–961
Article
PubMed
PubMed Central
CAS
Google Scholar
Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265
Article
CAS
PubMed
Google Scholar
Mayer AMS, Rodriguez AD, Berlinck RGS, Fusetani N (2011) Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 153(2):191–222
Article
PubMed
CAS
Google Scholar
Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4(2):333–342
CAS
PubMed
Google Scholar
Beutler JA (2009) Natural products as a foundation for drug discovery. Curr Protoc Pharmacol 46:9.11.1-9.11.21
Article
Google Scholar
Glaser KB, Mayer AM (2009) A renaissance in marine pharmacology: from preclinical curiosity to clinical reality. Biochem Pharmacol 78(5):440–448
Article
CAS
PubMed
Google Scholar
De Vries DJ, Hall MR (1994) Marine biodiversity as a source of chemical diversity. Drug Develop Res 33(2):161–173
Article
Google Scholar
Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9(6):1056–1100
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochem 68(7):954–979
Article
CAS
Google Scholar
Newman DJ, Cragg GM (2017) Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar Drugs 15(4):99. https://doi.org/10.3390/md15040099
Article
CAS
PubMed Central
Google Scholar
Kanase HR, Singh KM (2018) Marine pharmacology: potential, challenges, and future in India. J Med Sci 38:49–53
Article
Google Scholar
Gerwick WH (2012) Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19(1):85–98
Article
CAS
PubMed
PubMed Central
Google Scholar
Price FW (1964) A rapid paper chromatographic technique for simultaneous assay of several enzymes in a tissue homogenate. Anal Biochem 8:24–33
Article
CAS
PubMed
Google Scholar
Håkanson R (1966) Histidine decarboxylase in experimental tumours. J Pharm Pharmacol 18(12):769–774
Article
PubMed
Google Scholar
Grabley S, Thiericke R (1999) Drug discovery from nature. Springer, New York, pp 38–48
Google Scholar
Cragg GM, Boyd MR, Khanna R, Newman DJ, Sausville EA (1999) Recent advances in phytochemistry. In: Romero JT (ed) Phytochemicals in human health protection, nutrition, and plant defense, vol 33. Kluwer Academic, New York, pp 1–29
Google Scholar
D’Orazio N, Gammone MA, Gemello E, De Girolamo M, Cusenza S, Riccioni G (2012) Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 10(4):812–833
Article
CAS
PubMed
PubMed Central
Google Scholar
Senthilkumar K, Kim SK (2013) Marine invertebrate natural products for anti-inflammatory and chronic diseases. Evid Based Complement Alternat Med 2013:572859
Article
PubMed
PubMed Central
Google Scholar
Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 42(3):355–357
Article
CAS
PubMed
Google Scholar
Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2(12):666–673
Article
CAS
PubMed
Google Scholar
Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73(4):1146–1152
Article
CAS
PubMed
Google Scholar
Fenical W, Jensen PR, Palladino MA, Lam KS, Lloyd GK, Potts BC (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 17(6):2175–2180
Article
CAS
PubMed
Google Scholar
Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao T-H, Neuteboom STC, Richardson P, Palladino MA, Anderson KC (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419
Article
CAS
PubMed
Google Scholar
Lam KS, Lloyd GK, Neuteboom STC, Palladino MA, Sethna KM, Spear MA, Potts BC (2010). In: Buss AD, Butler MS (eds) Natural product chemistry for drug discovery. Royal Society of Chemistry, Cambridge, p 355
Google Scholar
Lam KS, Lloyd GK, Neuteboom ST, Palladino MA, Sethna KM, Spear MA, Potts BC (2010) From natural product to clinical trials: NPI-0052 (salinosporamide A), a marine actinomycete derived anticancer agent. Royal Society of Chemistry, Cambridge, pp 355–373
Google Scholar
Marx LB, Burton JW (2018) A total synthesis of Salinosporamide A. Chem Eur J 24:6747
Article
CAS
PubMed
Google Scholar
Lee HS, Jeong GS (2020) Salinosporamide A, a marine-derived proteasome inhibitor, inhibits T cell activation through regulating proliferation and the cell cycle. Molecules 25(21):5031. https://doi.org/10.3390/molecules25215031
Article
CAS
PubMed Central
Google Scholar
Gulder TAM, Moore BS (2010) Salinosporamide natural products: Potent 20S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed 49:9346–9367
Article
CAS
Google Scholar
Dou QP, Zonder JA (2014) Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets 14(6):517–536
Article
CAS
PubMed
PubMed Central
Google Scholar
Voorhees PM, Orlowski RZ (2006) The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 46:189–213
Article
CAS
PubMed
Google Scholar
Twombly R (2003) First proteasome inhibitor approved for multiple myeloma. J Natl Cancer Inst 95(12):845
Article
PubMed
Google Scholar
Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268(5211):726–731
Article
CAS
PubMed
Google Scholar
Williams PG (2009) Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends Biotechnol 27(1):45–52
Article
CAS
PubMed
Google Scholar
Mateos MV, Ocio EM, San Miguel JF (2013) Novel generation of agents with proven clinical activity in multiple myeloma. Semin Oncol 40(5):618–633
Article
CAS
PubMed
Google Scholar
Wang H, Guan F, Chen D, Dou QP, Yang H (2014) An analysis of the safety profile of proteasome inhibitors for treating various cancers. Expert Opin Drug Saf 13(8):1043–1054
Article
CAS
PubMed
Google Scholar
Ashjian E, Redic K (2016) Multiple myeloma: updates for pharmacists in the treatment of relapsed and refractory disease. J Oncol Pharm Pract 22(2):289–302. https://doi.org/10.1177/1078155215572036
Article
CAS
PubMed
Google Scholar
Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785
Article
CAS
PubMed
Google Scholar
Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA, Anderson KC (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87(3):1104–1112
Article
CAS
PubMed
Google Scholar
Russo SM, Tepper JE, Baldwin AS Jr, Liu R, Adams J, Elliott P, Cusack JC Jr (2001) Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 50(1):183–193
Article
CAS
PubMed
Google Scholar
Adams J (2002) Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol 6(4):493–500
Article
CAS
PubMed
Google Scholar
Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dong L, Castro A, Palombella V, Adams J, Anderson KC (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277(19):16639–16647
Article
CAS
PubMed
Google Scholar
Ahn KS, Sethi G, Chao TH, Neuteboom ST, Chaturvedi MM, Palladino MA, Younes A, Aggarwal BB (2007) Salinosporamide A (NPI-0052) potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through down-modulation of NF-kappaB regulated gene products. Blood 110(7):2286–2295
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs O (2013) Targeting of NF-kappaB signaling pathway, other signaling pathways and epigenetics in therapy of multiple myeloma. Cardiovasc Hematol Disord Drug Targets 13(1):16–34
Article
CAS
PubMed
Google Scholar
Potts BC, Albitar MX, Anderson KC, Baritaki S, Berkers C, Bonavida B, Chandra J, Chauhan D, Cusack JC Jr, Fenical W, Ghobrial IM, Groll M, Jensen PR, Lam KS, Lloyd GK, McBride W, McConkey DJ, Miller CP, Neuteboom ST, Oki Y, Ovaa H, Pajonk F, Richardson PG, Roccaro AM, Sloss CM, Spear MA, Valashi E, Younes A, Palladino MA (2011) Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 11(3):254–284
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma L, Diao A (2015) Marizomib, a potent second generation proteasome inhibitor from natural origin. Anticancer Agents Med Chem 15(3):298–306
Article
CAS
PubMed
Google Scholar
de la Puente P, Azab AK (2013) Contemporary drug therapies for multiple myeloma. Drugs Today (Barc) 49(9):563–573
Article
Google Scholar
Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 70(16):6196–6203
Article
CAS
PubMed
Google Scholar
Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 Aresolution. Nature 386(6624):463–471
Article
CAS
PubMed
Google Scholar
DeMartino GN, Slaughter CA (1999) The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem 274(32):22123–22126
Article
CAS
PubMed
Google Scholar
Goldberg AL, Cascio P, Saric T (2002) Rock KL (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39(3–4):147–164
Article
CAS
PubMed
Google Scholar
Naujokat C (2002) Hoffmann S (2002) Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest 82(8):965–980
Article
CAS
PubMed
Google Scholar
Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5):349–360
Article
CAS
PubMed
Google Scholar
Williams S, Pettaway C, Song R, Papandreou C, Logothetis C, McConkey DJ (2003) Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol Cancer Ther 2:835–843
CAS
PubMed
Google Scholar
Nawrocki ST, Bruns CJ, Harbison MT, Bold RJ, Gotsch BS, Abbruzzese JL, Elliott P, Adams J, McConkey DJ (2002) Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 1:1243–1253
CAS
PubMed
Google Scholar
Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107:257–264
Article
CAS
PubMed
Google Scholar
Fribley A, Zeng Q, Wang CY (2004) Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24:9695–9704
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V, Bennett F, Pollock PM, Trent JM, Hendrix MJ, Rizzo P, Miele L, Nickoloff BJ (2005) Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res 65:6282–6293
Article
CAS
PubMed
Google Scholar
Scagliotti G (2006) Proteasome inhibitors in lung cancer. Crit Rev Oncol Hematol 58:177–189
Article
PubMed
Google Scholar
Adams J (2002) The proteasome as a novel target for the treatment of breast cancer. Breast Dis 15:61–70
Article
CAS
PubMed
Google Scholar
Yu C, Rahmani M, Dent P, Grant S (2004) The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 295:555–566
Article
CAS
PubMed
Google Scholar
Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO (2009) Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 100(1):24–28
Article
CAS
PubMed
Google Scholar
Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458(7237):438–444
Article
CAS
PubMed
Google Scholar
Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 5(7):596–613
Article
CAS
PubMed
Google Scholar
Chen ZJ (2005) Ubiquitin signalling in the NF-kappa B pathway. Nat Cell Biol 7(8):758–765
Article
CAS
PubMed
PubMed Central
Google Scholar
Blagosklonny MV (2002) p53: an ubiquitous target of anticancer drugs. Int J Cancer 98(2):161–166
Article
CAS
PubMed
Google Scholar
Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349(6305):132–138
Article
CAS
PubMed
Google Scholar
Diehl JA, Zindy F, Sherr CJ (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquintin-proteasome pathway. Genes Dev 11(8):957–972
Article
CAS
PubMed
Google Scholar
Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639
Article
CAS
PubMed
Google Scholar
Ling YH, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 278:33714–33723
Article
CAS
PubMed
Google Scholar
Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99:14374–14379
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrocki ST, Carew JS, Dunner K Jr, Boise LH, Chiao PJ, Huang P, Abbruzzese JL, McConkey DJ (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519
Article
CAS
PubMed
Google Scholar
Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M, Chandra J (2007) NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 110(1):267–277
Article
CAS
PubMed
PubMed Central
Google Scholar
Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao TH, Neuteboom ST, Richardson P, Palladino MA, Anderson KC (2005) A novelorally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419
Article
CAS
PubMed
Google Scholar
Sloss CM, Wang F, Palladino MA, Cusack JC Jr (2010) Activation of EGFR by proteasome inhibition requires HB-EGF in pancreatic cancer cells. Oncogene 29(21):3146–3152
Article
CAS
PubMed
PubMed Central
Google Scholar
Baritaki S, Suzuki E, Umezawa K, Spandidos DA, Berenson J, Daniels TR, Penichet ML, Jazirehi AR, Palladino M, Bonavida B (2008) Inhibition of Yin Yang 1-dependent repressor activity of DR5 transcription and expression by the novel proteasome inhibitor NPI-0052 contributes to its TRAIL-enhanced apoptosis in cancer cells. J Immunol 180(9):6199–6210
Article
CAS
PubMed
Google Scholar
Roccaro AM, Leleu X, Sacco A, Jia X, Melhem M, Moreau AS, Ngo HT, Runnels J, Azab A, Azab F, Burwick N, Farag M, Treon SP, Palladino MA, Hideshima T, Chauhan D, Anderson KC, Ghobrial IM (2008) Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood 111(9):4752–4763
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller CP, Rudra S, Keating MJ, Wierda WG, Palladino M, Chandra J (2009) Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells. Blood 113(18):4289–4299
Article
CAS
PubMed
PubMed Central
Google Scholar
Fenical W (2013) Scripps institution of oceanography, La Jolla, CA, USA. Personal Communication, La Jolla
Google Scholar
Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, Palladino MA, Anderson KC (2008) Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 111(3):1654–1664
Article
CAS
PubMed
PubMed Central
Google Scholar
Richardson PG, Xie W, Jagannath S, Jakubowiak A, Lonial S, Raje NS, Alsina M, Ghobrial IM, Schlossman RL, Munshi NC, Mazumder A, Vesole DH, Kaufman JL, Colson K, McKenney M, Lunde LE, Feather J, Maglio ME, Warren D, Francis D, Hideshima T, Knight R, Esseltine DL, Mitsiades CS, Weller E, Anderson KC (2014) Lenalidomide, Bortezomib, and Dexamethasone in patients with relapsed or relapsed/refractory multiple myeloma (MM): encouraging response rates and tolerability with correlation of outcome and adverse cytogenetics in a phase II study. Blood 123(10):1461–1469
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurzrock R, Hamlin P, Younes A, Hong D, Gordon M, Spear MA, Palladino MA, Lloyd GK, Longenecker AM, Neuteboom ST, Cropp GF, Hannah A, Aghajanian C (2007) Phase 1 clinical trial of a novel proteasome inhibitor (NPI-0052) in patients with lymphomas and solid tumors. Blood 110(11):198B
Article
Google Scholar
Kavallaris M, Verrills NM, Hill BT (2001) Anticancer therapy with novel tubulin-interacting drugs. Drug Resist Updat 4(6):392–401
Article
CAS
PubMed
Google Scholar
Hadfield JA, Ducki S, Hirst N, McGown AT (2003) Tubulin and microtubules as targets for anticancer drugs. Prog Cell Cycle Res 5:309–325
PubMed
Google Scholar
Kingston DG (2009) Tubulin-interactive natural products as anticancer agents. J Nat Prod 72(3):507–515
Article
CAS
PubMed
PubMed Central
Google Scholar
Newman DJ, Cragg GM (2014) Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 12(1):255–278
Article
PubMed
PubMed Central
CAS
Google Scholar
Pettit GR, Kamano Y, Fujii Y, Herald CL, Inoue M, Brown P, Gust D, Kitahara K, Schmidt JM, Doubek DL, Michel C (1981) Marine animal biosynthetic constituents for cancer chemotherapy. J Nat Prod 44(4):482–485
Article
CAS
PubMed
Google Scholar
Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM (1989) Isolation and structure of the cytostatic linear depsipeptide dolastatin 15. J Org Chem 54:6005–6006
Article
CAS
Google Scholar
Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynski L, Tomer K, Bontems RJ (1990) The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. Biochem Pharmacol 39(12):1941–1949
Article
PubMed
Google Scholar
Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64(7):907–910
Article
CAS
PubMed
Google Scholar
Williamson RT, Chapin EL, Carr AW, Gilbert JR, Graupner PR, Lewer P, McKamey P, Carney JR, Gerwick WH (2000) New diffusion-edited NMR experiments to expedite the dereplication of known compounds from natural product mixtures. Org Lett 2(3):289–292
Article
CAS
PubMed
Google Scholar
Flahive E, Srirangam J (2005) Anticancer agents from natural products. In: Cragg GM, Kingston DGI, Newman DJ (eds) Natural products as pharmaceuticals and sources for lead structures. CRC Press, Boca Raton, pp 191–213
Google Scholar
Banerjee S, Wang Z, Mohammad M, Sarkar FH, Mohammad RM (2008) Efficacy of selected natural products as therapeutic agents against cancer. J Nat Prod 71(3):492–496
Article
CAS
PubMed
Google Scholar
Singh R, Mukul S, Joshi P, Rawat DS (2008) Clinical status of anti-cancer agents derived from marine sources. Clinical status of anti-cancer agents derived from marine sources. Anticancer Agents Med Chem 8(6):603–617
Article
CAS
PubMed
Google Scholar
Ray A, Okouneva T, Manna T, Miller HP, Schmid S, Arthaud L, Luduena R, Jordan MA, Wilson L (2007) Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate. Cancer Res 67(8):3767–3776
Article
CAS
PubMed
Google Scholar
Bai R, Pettit GR, Hamel E (1990) Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the Vinca alkaloid binding domain. Biochem Pharmacol 39(12):1941–1949
Article
CAS
PubMed
Google Scholar
Bai RL, Pettit GR, Hamel E (1990) Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and Vinca alkaloid sites. J Biol Chem 265(28):17141–171419
Article
CAS
PubMed
Google Scholar
Gerwick WH, Tan LT, Sitachitta N (2001) Nitrogen-containing metabolites from marine cyanobacteria. In: Cordell G (ed) The alkaloids. Academic Press, San Diego, pp 75–184
Google Scholar
Ratnayake R, Gunasekera SP, Ma JJ, Dang LH, Carney TJ, Paul VJ, Luesch H (2020) Dolastatin 15 from a Marine Cyanobacterium Suppresses HIF-1α Mediated Cancer Cell Viability and Vascularization. ChemBioChem 21:2356
Article
CAS
PubMed
PubMed Central
Google Scholar
Mita AC, Hammond LA, Bonate PL, Weiss G, McCreery H, Syed S, Garrison M, Chu QSC, DeBono JS, Jones CB, Weitman S, Rowinsky EK (2006) Phase I and pharmacokinetic study of tasidotin hydrochloride (ILX651), a third-generation dolastatin-15 analogue, administered weekly for 3 weeks every 28 days in patients with advanced solid tumors. Clin Cancer Res 12(17):5207–5215
Article
CAS
PubMed
Google Scholar
Cunningham C, Appleman LJ, Kirvan-Visovatti M, Ryan DP, Regan E, Vukelja S, Bonate PL, Ruvuna F, Fram RJ, Jekunen A, Weitman S, Hammond LA (2005) Eder JP Jr (2005) Phase I and pharmacokinetic study of the dolastatin-15 analogue tasidotin (ILX651) administered intravenously on days 1, 3, and 5 every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 11:7825–7833
Article
CAS
PubMed
Google Scholar
Gajula PK, Asthana J, Panda D, Chakraborty TK (2013) A synthetic dolastatin 10 analogue suppresses microtubule dynamics, inhibits cell proliferation, and induces apoptotic cell death. J Med Chem 56(6):2235–2245
Article
CAS
PubMed
Google Scholar
Jordan A, Hadfield JA, Lawernce NJ, McGown AT (1998) Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 18(4):259–296
Article
CAS
PubMed
Google Scholar
Bai R, Pettit GR, Hamel E (1992) Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Inhibition of tubulin polymerization mediated through the Vinca alkaloid binding domain. Biochem Pharmacol 43(12):2637–2645
Article
CAS
PubMed
Google Scholar
Pettit GR, Srirangam JK, Barkoczy J, Williams MD, Durkin KP, Boyd MR, Bai R, Hamel E, Schmidt JM (1995) Chapuis JC (1995) Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifications. Anticancer Drug Des 10(7):529–544
CAS
PubMed
Google Scholar
Miyazaki K, Kobayashi M, Natsume T, Gondo M, Mikami T, Sakakibara K (1995) Tsukagoshi S (1995) Synthesis and antitumor activity of novel dolastatin 10 analogs. Chem Pharm Bull (Tokyo) 43(10):1706–1718
Article
CAS
Google Scholar
Harrigan GG, Luesch H, Yoshida WY, Moore RE, Nagle DG, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA (1998) Symplostatin 1:a dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod 61(9):1075–1077
Article
CAS
PubMed
Google Scholar
Riely GJ, Gadgeel S, Rothman I, Saidman B, Sabbath K, Feit K, Kris MG, Rizvi NA (2007) A phase 2 study of TZT-1027, administered weekly to patients with advanced non-small cell lung cancer following treatment with platinumbased chemotherapy. Lung Cancer 55(2):181–185
Article
PubMed
Google Scholar
Otani M, Natsume T, Watanabe JI, Kobayashi M, Murakoshi M, Mikami T, Nakayama T (2000) TZT-1027, an antimicrotubule agent, attacks tumor vasculature and induces tumor cell death. Jpn J Cancer Res 91(8):837–844
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi M, Natsume T, Tamaoki S et al (1997) Antitumor activity of TZT-1027, a novel dolastatin 10 derivative. Jpn J Cancer Res 88(3):316–327
Article
CAS
PubMed
PubMed Central
Google Scholar
Butler MS (2008) (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25(3):475–516
Article
CAS
PubMed
Google Scholar
Cruz-Monserrate Z, Mullaney J, Harran P, Pettit GR, Hamel E (2003) Dolastatin 15 binds in the Vinca domain of tubulin as demonstrated by hummel-dreyer chromatography. Eur J Biochem 270(18):3822–3828
Article
CAS
PubMed
Google Scholar
de Arruda M, Cocchiaro CA, Nelson CM, Grinnell C, Janssen B, Haupt A, Barlozzari T (1995) LU103793 (NSC D-669356): a synthetic peptide that interacts with microtubules and inhibits mitosis. Cancer Res 55(14):3085–3092
PubMed
Google Scholar
Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67(8):1216–1238
Article
CAS
PubMed
Google Scholar
Ebbinghaus S, Hersh E, Cunningham CC, et al. Phase II study of synthadotin (SYN-D; ILX651) administered daily for 5 consecutive days once every 3 weeks in patients with inoperable locally advanced or metastatic melanoma. In: Proceedings of the 2004 American society of clinical oncology annual meeting; Abstr #7530. In 2004.
Jordi R, Jordana MB, Daniel PZ, Marc NJ, Roger P, Lourdes M, Carles Q, Carles P, Itziar E, Ignacio B, Alfonso V, Víctor G, Jorge C, Julià B, Joaquim S, Bonaventura C, Júlia VA, Nuria IU (2021) Identification of plitidepsin as potent inhibitor of SARS-CoV-2-induced cytopathic effect after a drug repurposing screen. Front Pharmacol 12:278
Google Scholar
Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF (2008) New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol 9(12):1157–1165
Article
CAS
PubMed
Google Scholar
Muñoz-Alonso MJ, González-Santiago L, Martínez T, Losada A, Galmarini CM, Muñoz A (2009) The mechanism of action of plitidepsin. Curr Opin Investig Drugs 10(6):536–542
PubMed
Google Scholar
Nalda-Molina R, Valenzuela B, Ramon-Lopez A, Miguel-Lillo B, Soto-Matos A, Perez-Ruixo JJ (2009) Population pharmacokinetics meta-analysis of plitidepsin (Aplidin) in cancer subjects. Cancer Chemother Pharmacol 64(1):97–108
Article
CAS
PubMed
Google Scholar
Ribrag V, Caballero D, Fermé C, Zucca E, Arranz R, Briones J, Gisselbrecht C, Salles G, Gianni AM, Gomez H, Kahatt C, Corrado C, Szyldergemajn S, Extremera S, de Miguel B, Cullell-Young M, Cavalli F (2013) Multicenter phase II study of plitidepsin in patients with relapsed/refractory non-Hodgkin’s lymphoma. Haematologica 98(3):357–363
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez MA (2021) Plitidepsin: a repurposed drug for the treatment of COVID-19. Antimicrob Agents Chemother 65(4):e00200-21. https://doi.org/10.1128/AAC.00200-21
Article
PubMed
PubMed Central
Google Scholar
Le Tourneau C, Raymond E, Faivre S (2007) Aplidine: a paradigm of how handling activity and toxicity of novel marine anticancer poison. Curr Pharm Des 13(33):3427–3439
Article
PubMed
Google Scholar
Le Tourneau C, Faivre S, Ciruelos E, Domínguez MJ, López-Martín JA, Izquierdo MA, Jimeno J, Raymond E (2010) Reports of clinical benefit of plitidepsin (Aplidine), a new marine-derived anticancer agent, in patients with advanced medullary thyroid carcinoma. Am J Clin Oncol 33(2):132–136
Article
PubMed
CAS
Google Scholar
García-Fernández LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, González L, Nakayama K, Nakayama KI, Fernández-Sousa JM, Muñoz A, Sánchez-Puelles JM (2002) Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta. Oncogene 21(49):7533–7544
Article
PubMed
CAS
Google Scholar
Suarez Y, Gonzalez-Santiago L, Zarich N, Davalos A, Aranda JF, Alonso MA, Lasuncion MA, Rojas JM, Munoz A (2006) Plitidepsin cellular binding and Rac1/JNK pathway activation depend on membrane cholesterol content. Mol Pharmacol 70(5):1654–1663
Article
CAS
PubMed
Google Scholar
Gonzalez-Santiago L, Suarez Y, Zarich N, Munoz-Alonso MJ, Cuadrado A, Martinez T, Goya L, Iradi A, Saez-Tormo G, Maier JV (2006) Aplidin induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death Differ 13(11):1968–1981
Article
CAS
PubMed
Google Scholar
Urdiales JL, Morata P, de Castro IN, Sánchez-Jiménez F (1996) Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett 102(1–2):31–37
Article
CAS
PubMed
Google Scholar
Depenbrock H, Peter R, Faircloth GT, Manzanares I, Jimeno J, Hanauske AR (1998) In vitro activity of aplidine, a new marine-derived anti-cancer compound, on freshly explanted clonogenic human tumour cells and haematopoietic precursor cells. Br J Cancer 78(6):739–744
Article
CAS
PubMed
PubMed Central
Google Scholar
Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98(13):3860–3863
Article
CAS
PubMed
Google Scholar
Gajate C, Mollinedo F (2005) Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280(12):11641–11647
Article
CAS
PubMed
Google Scholar
Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109(2):711–719
Article
CAS
PubMed
Google Scholar
Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, Vilanova D, Montero JC, Mitsiades N, McMullan CJ, Munshi NC, Hideshima T, Chauhan D, Aviles P, Otero G, Faircloth G, Mateos MV, Richardson PG, Mollinedo F, San-Miguel JF, Anderson KC (2008) Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res 68(13):5216–5225
Article
CAS
PubMed
Google Scholar
Morande PE, Zanetti SR, Borge M, Nannini P, Jancic C, Bezares RF, Bitsmans A, Gonzalez M, Rodriguez AL, Galmarini CM (2012) The cytotoxic activity of Aplidin in chronic lymphocytic leukemia (CLL) is mediated by a direct effect on leukemic cells and an indirect effect on monocyte-derived cells. Invest New Drugs 30(5):1830–1840
Article
CAS
PubMed
Google Scholar
Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI (2008) McPhail KL (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130(20):6324–6325
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa M, Costa-Rodrigues J, Fernandes MH, Barros P, Vasconcelos V, Martins R (2012) Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis. Mar Drugs 10(10):2181–2207
Article
CAS
PubMed
PubMed Central
Google Scholar
Tranter D, Platero AO, Kawaguchi S, Kazemi S, Serrill JD, Kellosalo J, Vogel WK, Richter U, Mattos DR, Wan X, Thornburg CC, Oishi S, McPhail KL, Ishmael JE, Paavilainen VO (2020) Coibamide A targets sec 61 to prevent biogenesis of secretory and membrane proteins. ACS Chem Biol 15(8):2125–2136
Article
CAS
PubMed
PubMed Central
Google Scholar
Hau AM, Greenwood JA, Löhr CV, Serrill JD, Proteau PJ, Ganley IG, Ishmael JE (2013) Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells. PLoS ONE 8:e65250
Article
CAS
PubMed
PubMed Central
Google Scholar
Brennan C (2011) Genomic profiles of glioma. Curr Neurol Neurosci Rep 11:291–297
Article
PubMed
Google Scholar
Lin X, Liu M, Hu C, Liao DJ (2010) Targeting cellular proapoptotic molecules for developing anticancer agents from marine sources. Curr Drug Targets 11:708–715
Article
CAS
PubMed
Google Scholar
Blayney DW, Zhang Q, Feng J, Zhao Y, Bondarenko I, Vynnychenko I, Kovalenko N, Nair S, Ibrahim E, Udovista DP, Mohanlal R, Ogenstad S, Ette E, Du L, Huang L, Shi YK (2020) Efficacy of Plinabulin vs Pegfilgrastim for prevention of chemotherapy-induced neutropenia in adults with non-small cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol 6(11):e204429. https://doi.org/10.1001/jamaoncol.2020.4429
Article
PubMed
PubMed Central
Google Scholar