Garofalo M, Condorelli G, Croce CM (2008) MicroRNAs in diseases and drug response. Curr Opin Pharmacol 8:661–667. https://doi.org/10.1016/J.COPH.2008.06.005
Article
CAS
PubMed
Google Scholar
Lu M, Zhang Q, Deng M et al (2008) An analysis of human microRNA and disease associations. PLoS ONE 3:3420. https://doi.org/10.1371/journal.pone.0003420
Article
CAS
Google Scholar
Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282
Article
CAS
PubMed
Google Scholar
Hayder H, O’brien J, Nadeem U, Peng C (2018) MicroRNAs: crucial regulators of placental development. Reprod Rev. https://doi.org/10.1530/REP
Article
Google Scholar
Gu S, Kay MA (2010) How do miRNAs mediate translational repression? Silence 1:1–11
Article
Google Scholar
Breving K, Esquela-Kerscher A (2010) The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 42:1316–1329. https://doi.org/10.1016/J.BIOCEL.2009.09.016
Article
CAS
PubMed
Google Scholar
Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97:1–6
Article
CAS
PubMed
Google Scholar
Biggar KK, Storey KB (2015) Insight into post-transcriptional gene regulation: stress-responsive microRNAs and their role in the environmental stress survival of tolerant animals. J Exp Biol. https://doi.org/10.1242/jeb.104828
Article
PubMed
Google Scholar
Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2015.05.001
Article
PubMed
PubMed Central
Google Scholar
Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524
Article
CAS
PubMed
Google Scholar
Behm-Ansmant I, Rehwinkel J, Doerks T et al (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898. https://doi.org/10.1101/gad.1424106
Article
PubMed
PubMed Central
Google Scholar
Oliveira C, Faoro H, Alves LR, Goldenberg S (2017) RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae. Genet Mol Biol. https://doi.org/10.1590/1678-4685-GMB-2016-0258
Article
PubMed
PubMed Central
Google Scholar
Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110
Article
CAS
PubMed
Google Scholar
Okamura K (2012) Diversity of animal small RNA pathways and their biological utility. Wiley Interdiscip Rev RNA 3:351–368
Article
CAS
PubMed
Google Scholar
Jiang S, Yan W (2016) Current view of microRNA processing. Sign Transduct Insights 2016:5–9. https://doi.org/10.4137/STi.S12317
Article
Google Scholar
Drewry M, Helwa I, Rand Allingham R et al (2016) miRNA profile in three different normal human ocular tissues by miRNA-Seq. Investig Ophthalmol Vis Sci 57:3731–3739. https://doi.org/10.1167/iovs.16-19155
Article
CAS
Google Scholar
Xie M, Steitz JA (2014) Versatile microRNA biogenesis in animals and their viruses. RNA Biol 11:673–681
Article
PubMed
PubMed Central
Google Scholar
Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thromb Haemost 107:605–610
Article
CAS
PubMed
Google Scholar
Davis-Dusenbery BN, Hata A (2010) Mechanisms of control of microRNA biogenesis. J Biochem. https://doi.org/10.1093/jb/mvq096
Article
PubMed
PubMed Central
Google Scholar
Beezhold KJ, Castranova V, Chen F (2010) Microprocessor of microRNAs: regulation and potential for therapeutic intervention. Mol Cancer 9:134. https://doi.org/10.1186/1476-4598-9-134
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrera-Carrillo E, Berkhout B (2017) SURVEY AND SUMMARY Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res 45:10369–10379. https://doi.org/10.1093/nar/gkx779
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdelfattah AM, Park C, Choi MY (2014) Update on non-canonical microRNAs. BioMol Concepts 5:275–287. https://doi.org/10.1515/bmc-2014-0012
Article
CAS
PubMed
PubMed Central
Google Scholar
Havens MA, Reich AA, Duelli DM, Hastings ML (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 40:4626–4640. https://doi.org/10.1093/nar/gks026
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava SK, Arora S, Averett C et al (2015) Modulation ofmMicroRNAs by phytochemicals in cancer: underlying mechanisms and translational significance. Biomed Res Int. https://doi.org/10.1155/2015/848710
Article
PubMed
PubMed Central
Google Scholar
Mirza S, Shah K, Patel S et al (2017) Natural compounds as epigenetic regulators of human dendritic cell-mediated immune function. J Immunother 41:169–180
Article
Google Scholar
Piletič K, Kunej T (2016) MicroRNA epigenetic signatures in human disease. Arch Toxicol 90:2405–2419
Article
PubMed
Google Scholar
Bartel DP (2004) Review MicroRNAs: genomics, biogenesis, mechanism, and function ulation of hematopoietic lineage differentiation in mam-mals (Chen et al., 2004), and control of leaf and flower development in plants (Aukerman and Sakai, 2003)
Ramamoorthy A, Skaar TC (2011) In silico identification of microRNAs predicted to regulate the drug metabolizing cytochrome P450 genes. Drug Metab Lett. 5(2):126–31. https://doi.org/10.2174/187231211795305258
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoi T, Nakajima M (2013) MicroRNAs as mediators of drug toxicity. Annu Rev Pharmacol Toxicol 53:377–400
Article
CAS
PubMed
Google Scholar
Peng L, Zhong X (2015) Epigenetic regulation of drug metabolism and transport. Acta Pharm Sin B 5:106–112
Article
PubMed
PubMed Central
Google Scholar
Johansson I, Ingelman-Sundberg M (2011) Genetic polymorphism and toxicology-with emphasis on cytochrome P450. Toxicol Sci 120:1–13. https://doi.org/10.1093/toxsci/kfq374
Article
CAS
PubMed
Google Scholar
Yu AM, Tian Y, Tu MJ et al (2016) MicroRNA pharmacoepigenetics: posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab Dispos 44:308–319
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez A, Ingelman-Sundberg M (2009) Epigenetic and microRNA-dependent control of cytochrome P450 expression: a gap between DNA and protein. Pharmacogenomics 10:1067–1076
Article
CAS
PubMed
Google Scholar
Li D, Tolleson WH, Yu D et al (2019) Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: epigenetic mechanisms in environmental toxicology and carcinogenesis. J Environ Sci Health Part C. https://doi.org/10.1080/10590501.2019.1639481
Article
Google Scholar
Yu A-M, Pan Y-Z (2012) Noncoding microRNAs: small RNAs play a big role in regulation of ADME? Acta Pharm Sin B 2:93–101. https://doi.org/10.1016/j.apsb.2012.02.011
Article
CAS
PubMed
Google Scholar
Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236
Article
CAS
PubMed
Google Scholar
Hirota T, Tanaka T, Takesue H, Ieiri I (2017) Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 13:19–30
Article
CAS
PubMed
Google Scholar
Toscano-Garibay JD, Aquino-Jarquin G (2012) Regulation exerted by miRNAs in the promoter and UTR sequences: MDR1/P-gp expression as a particular case. DNA Cell Biol 31:1358–1364. https://doi.org/10.1089/dna.2012.1703
Article
CAS
PubMed
Google Scholar
Ikemura K, Iwamoto T, Okuda M (2014) MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function. Pharmacol Ther 143:217–224
Article
CAS
PubMed
Google Scholar
Aqeilan RI, Calin G, Kocerha J et al (2019) The potential for microRNA therapeutics and clinical research. Front Genet. https://doi.org/10.3389/fgene.2019.00478
Article
Google Scholar
Lecellier CH, Dunoyer P, Arar K et al (2005) A cellular microRNA mediates antiviral defense in human cells. Science (80-) 308:557–560. https://doi.org/10.1126/science.1108784
Article
CAS
Google Scholar
Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev. https://doi.org/10.1152/physrev.00036.2006.-The
Article
PubMed
Google Scholar
Hébert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206
Article
PubMed
Google Scholar
Van Rooij E, Kauppinen S (2014) Review review series: small RNA development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864. https://doi.org/10.15252/emmm.201100899
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang DZ (2010) MicroRNAs in cardiac development and remodeling. Pediatr Cardiol 31:357–362
Article
PubMed
Google Scholar
Vasu S, Kumano K, Darden CM et al (2019) MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells. https://doi.org/10.3390/cells8121533
Article
PubMed
PubMed Central
Google Scholar
Chen JF, Callis TE, Wang DZ (2009) microRNAs and muscle disorders. J Cell Sci 122:13–20. https://doi.org/10.1242/jcs.041723
Article
CAS
PubMed
Google Scholar
Tagliaferri P, Rossi M, Di Martino MT et al (2012) Promises and challenges of microRNA-based treatment of multiple myeloma. Curr Cancer Drug Targets 12:838–846
Article
CAS
PubMed
PubMed Central
Google Scholar
Stenvang J, Petri A, Lindow M et al (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3:1–7
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh SK, Nielsen P, Koshkin AA, Wengel J (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun. https://doi.org/10.1039/a708608c
Article
Google Scholar
Fabani MM, Gait MJ (2008) miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14:336–346. https://doi.org/10.1261/rna.844108
Article
CAS
PubMed
PubMed Central
Google Scholar
Braasch DA, Corey DR (2002) Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry 41:4503–4510. https://doi.org/10.1021/bi0122112
Article
CAS
PubMed
Google Scholar
Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): ¢ne-tuning the recognition of DNA and RNA. Chem Biol 8:1–7
Article
CAS
PubMed
Google Scholar
Ishige T, Itoga S, Matsushita K (2018) Locked nucleic acid technology for highly sensitive detection of somatic mutations in cancer. Adv Clin Chem 83:53–72. https://doi.org/10.1016/BS.ACC.2017.10.002
Article
CAS
PubMed
Google Scholar
Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18:1111–1120. https://doi.org/10.1038/gt.2011.100
Article
CAS
PubMed
Google Scholar
Hutvágner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol. https://doi.org/10.1371/journal.pbio.0020098
Article
PubMed
PubMed Central
Google Scholar
Baumann V, Winkler J (2014) Medicinal Chemistry miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 6:1967–1984. https://doi.org/10.4155/FMC.14.116
Article
CAS
PubMed
Google Scholar
Kasinski AL, Slack FJ (2012) Arresting the culprit: targeted antagomir delivery to sequester oncogenic miR-221 in HCC. Mol Ther Nucleic Acids 1:e12
Article
PubMed
PubMed Central
Google Scholar
Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with “antagomirs.” Nature 438:685–689. https://doi.org/10.1038/nature04303
Article
CAS
PubMed
Google Scholar
Jopling CL, Schütz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4:77–85. https://doi.org/10.1016/j.chom.2008.05.013
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindow M, Kauppinen S (2012) Discovering the first microrna-targeted drug. J Cell Biol 199:407–412. https://doi.org/10.1083/jcb.201208082
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science (80-) 327:198–201. https://doi.org/10.1126/science.1178178
Article
CAS
Google Scholar
Takahashi R, Prieto-Vila M, Kohama I, Ochiya T (2019) Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci 110:1140–1147
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang NY (2018) Antisense phosphorodiamidate morpholino oligomers as novel antiviral compounds. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00750
Article
PubMed
PubMed Central
Google Scholar
Sharma C, Awasthi SK (2017) Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des 89(1):16-37. https://doi.org/10.1111/cbdd.12833
Article
CAS
PubMed
Google Scholar
Montazersaheb S, Saeid Hejazi M, Charoudeh HN (2018) Potential of peptide nucleic acids in future therapeutic applications. Adv Pharm Bull 8:551–563. https://doi.org/10.15171/apb.2018.064
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh Jasbir 294–315 (1)
Järver P, Coursindel T, El Andaloussi S et al (2012) Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA. Mol Ther Nucleic Acids 1:e27
Article
PubMed
PubMed Central
Google Scholar
Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050
Article
CAS
PubMed
PubMed Central
Google Scholar
Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K et al (2012) Generation of miRNA sponge constructs. Methods 58:113–117. https://doi.org/10.1016/J.YMETH.2012.07.019
Article
CAS
PubMed
Google Scholar
Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 146:353–358
Article
CAS
PubMed
PubMed Central
Google Scholar
Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038. https://doi.org/10.1038/nature09144
Article
CAS
PubMed
PubMed Central
Google Scholar
Gandellini P, Profumo V, Folini M, Zaffaroni N (2011) MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin Ther Targets 15:265–279
Article
CAS
PubMed
Google Scholar
Barta T, Peskova L, Hampl A (2016) miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep. https://doi.org/10.1038/srep36625
Article
PubMed
PubMed Central
Google Scholar
Clauss S, Sinner MF, Kääb S, Wakili R (2015) The role of microRNAs in antiarrhythmic therapy for atrial fibrillation. Arrhythm Electrophysiol Rev 4(3):146–155. https://doi.org/10.15420/aer.2015.4.3.146
Article
PubMed
PubMed Central
Google Scholar
Wang Z (2009) MicroRNA interference technologies. Springer, Berlin
Book
Google Scholar
Wang Z (2011) The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol Biol 676:43–49. https://doi.org/10.1007/978-1-60761-863-8_3
Article
CAS
PubMed
Google Scholar
Lima JF, Cerqueira L, Figueiredo C et al (2018) Anti-miRNA oligonucleotides: a comprehensive guide for design. RNA Biol 15:338–352. https://doi.org/10.1080/15476286.2018.1445959
Article
PubMed
PubMed Central
Google Scholar
Krol J, Busskamp V, Markiewicz I et al (2010) Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141:618–631. https://doi.org/10.1016/j.cell.2010.03.039
Article
CAS
PubMed
Google Scholar
Winbanks CE, Beyer C, Hagg A et al (2013) miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4. PLoS ONE. https://doi.org/10.1371/journal.pone.0073589
Article
PubMed
PubMed Central
Google Scholar
Meloni M, Marchetti M, Garner K et al (2013) Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol Ther 21:1390–1402. https://doi.org/10.1038/MT.2013.89
Article
CAS
PubMed
PubMed Central
Google Scholar
Trang P, Medina PP, Wiggins JF et al (2010) Regression of murine lung tumors by the let-7 microRNA. Oncogene 29:1580–1587. https://doi.org/10.1038/onc.2009.445
Article
CAS
PubMed
Google Scholar
Meng J, Chen S, Han J-X et al (2018) Derepression of co-silenced tumor suppressor genes by nanoparticle-loaded circular ssDNA reduces tumor malignancy. Sci Transl Med 10:eaao6321
Article
PubMed
Google Scholar
Wen D, Danquah M, Chaudhary AK, Mahato RI (2015) Small molecules targeting microRNA for cancer therapy: promises and obstacles. J Control Release 219:237–247. https://doi.org/10.1016/J.JCONREL.2015.08.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Papapetrou EP, Korkola JE, Sadelain M (2010) Tissue/specific stem cells a genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells 28:287–296. https://doi.org/10.1002/stem.257
Article
CAS
PubMed
Google Scholar
Du C, Liu C, Kang J et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259. https://doi.org/10.1038/ni.1798
Article
CAS
PubMed
Google Scholar
Rhim C, Cheng CS, Kraus WE, Truskey GA (2010) Effect of microRNA modulation on bioartificial muscle function. Tissue Eng Part A. https://doi.org/10.1089/ten.tea.2009.0601
Article
PubMed
PubMed Central
Google Scholar
Sayed D, Rane S, Abdellatif M (2008) MicroRNAs challenge the status quo of therapeutic targeting. J Cardiiovasc Transl Res. https://doi.org/10.1007/s12265-008-9052-y
Article
Google Scholar
Athyros VG, Katsiki N, Karagiannis A (2016) Send orders for reprints to reprints@benthamscience.ae Is targeting microRNAs the philosopher’s stone for vascular disease?
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278
Article
CAS
PubMed
PubMed Central
Google Scholar
Makarova KS, Koonin EV. Annotation and classification of CRISPR-cas systems. https://doi.org/10.1007/978-1-4939-2687-9_4
Hille F, Charpentier E (No Title). https://doi.org/10.1098/rstb.2015.0496
Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-cas systems. Nat Rev Microbiol 9:467–477. https://doi.org/10.1038/nrmicro2577
Article
CAS
PubMed
Google Scholar
Aquino-Jarquin G (2017) Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-2142
Article
PubMed
Google Scholar
Ginn SL, Amaya AK, Alexander IE et al (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20:e3015
Article
PubMed
Google Scholar
You L, Tong R, Li M et al (2019) Advancements and obstacles of CRISPR-Cas9 technology in translational research. Mol Ther Methods Clin Dev 13:359–370
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao Q, Guo D, Chen S (2019) Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2019.00069/FULL
Article
PubMed
PubMed Central
Google Scholar
Nguyen D-D, Chang S (2017) Molecular sciences development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int J Mol Sci. https://doi.org/10.3390/ijms19010065
Article
PubMed
PubMed Central
Google Scholar
Biagioni A, Laurenzana A, Margheri F et al (2018) Delivery systems of CRISPR/Cas9-based cancer gene therapy. J Biol Eng. https://doi.org/10.1186/s13036-018-0127-2
Article
PubMed
PubMed Central
Google Scholar
Luo J (2016) CRISPR/Cas9: from genome engineering to cancer drug discovery. Trends in Cancer 2:313–324
Article
PubMed
PubMed Central
Google Scholar
Herrera-Carrillo E, Liu YP, Berkhout B (2017) Improving miRNA delivery by optimizing mirna expression cassettes in diverse virus vectors. Hum Gene Ther Methods. https://doi.org/10.1089/hgtb.2017.036
Article
PubMed
PubMed Central
Google Scholar
Melo SA, Sugimoto H, O’Connell JT et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721. https://doi.org/10.1016/j.ccell.2014.09.005
Article
CAS
PubMed
PubMed Central
Google Scholar
del C. Monroig P, Chen L, Zhang S, Calin GA (2015) Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev 81:104–116. https://doi.org/10.1016/J.ADDR.2014.09.002
Article
Google Scholar
Petrescu GED, Sabo AA, Torsin LI et al (2019) MicroRNA based theranostics for brain cancer: basic principles. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-019-1180-5
Article
PubMed
PubMed Central
Google Scholar
Gumireddy K, Young DD, Xiong X et al (2008) Supporting information small molecule inhibitors of microRNA miR-21 function. Angew Chem 120:7592–7594
Article
Google Scholar
Raver-Shapira N, Marciano E, Meiri E et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743. https://doi.org/10.1016/j.molcel.2007.05.017
Article
CAS
PubMed
Google Scholar
Bakhshandeh B, Soleimani M, Hafizi M et al (2012) A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 64:523–540. https://doi.org/10.1007/s10616-012-9430-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Godbey WT (2006) Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev 58:515–534. https://doi.org/10.1016/J.ADDR.2006.03.006
Article
CAS
PubMed
Google Scholar
Liu YP, Berkhout B (2011) miRNA cassettes in viral vectors: problems and solutions. Biochim Biophys Acta Gene Regul Mech 1809:732–745. https://doi.org/10.1016/J.BBAGRM.2011.05.014
Article
CAS
Google Scholar
Xie J, Burt DR, Gao G (2015) Adeno-associated virus-mediated microRNA delivery and therapeutics. Semin Liver Dis 35:81–88. https://doi.org/10.1055/s-0034-1397352
Article
CAS
PubMed
PubMed Central
Google Scholar
Naso MF, Tomkowicz B, Iii WLP, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. https://doi.org/10.1007/s40259-017-0234-5
Article
PubMed
PubMed Central
Google Scholar
Kota J, Chivukula RR, O’Donnell KA et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017. https://doi.org/10.1016/j.cell.2009.04.021
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchschacher GL, Wong-Staal F (2000) Development of lentiviral vectors for gene therapy for human diseases. Blood J Am Soc Hematol 95:2499–2504
CAS
Google Scholar
Liechtenstein T, Perez-Janices N, Escors D (2013) Lentiviral vectors for cancer immunotherapy and clinical applications. Cancers (Basel) 5:815–837. https://doi.org/10.3390/cancers5030815
Article
CAS
Google Scholar
Barquinero J, Eixarch H, Pérez-Melgosa M (2004) Retroviral vectors: new applications for an old tool. Gene Ther. https://doi.org/10.1038/sj.gt.3302363
Article
PubMed
Google Scholar
al Yacoub N, Romanowska M, Haritonova N, Foerster J (2007) Optimized production and concentration of lentiviral vectors containing large inserts. J Gene Med 9:579–584. https://doi.org/10.1002/jgm.1052
Article
CAS
PubMed
Google Scholar
Sliva K, Schnierle BS (2010) Selective gene silencing by viral delivery of short hairpin RNA. Virol J 7:1
Article
Google Scholar
Fu Y, Chen J, Huang Z (2019) Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA. https://doi.org/10.1186/s41544-019-0024-y
Article
Google Scholar
Yang Z, Cappello T, Wang L (2015) Emerging role of microRNAs in lipid metabolism. Acta Pharm Sin B 5:145–150
Article
PubMed
PubMed Central
Google Scholar
Wu Y, Crawford M, Mao Y et al (2013) Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2:e84. https://doi.org/10.1038/mtna.2013.14
Article
CAS
PubMed
PubMed Central
Google Scholar
Tros de Ilarduya C, Sun Y, Düzgüneş N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170. https://doi.org/10.1016/J.EJPS.2010.03.019
Article
CAS
PubMed
Google Scholar
Kobayashi M, Sawada K, Kimura T (2018) Is microRNA replacement therapy promising treatment for cancer? Non-coding RNA Investig 2:56–56. https://doi.org/10.21037/ncri.2018.09.04
Article
Google Scholar
Bai Z, Wei J, Yu C et al (2019) Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 7:1209–1225
Article
CAS
PubMed
Google Scholar
Kubo T, Yanagihara K, Takei Y et al (2012) Lipid-conjugated 27-nucleotide double-stranded RNAs with dicer-substrate potency enhance RNAi-mediated gene silencing. Mol Pharm 9:1374–1383. https://doi.org/10.1021/mp2006278
Article
CAS
PubMed
Google Scholar
McClorey G, Banerjee S (2018) Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines 6(2):51. https://doi.org/10.3390/biomedicines6020051
Article
CAS
PubMed Central
Google Scholar
Nayerossadat N, Ali P, Maedeh T (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27. https://doi.org/10.4103/2277-9175.98152
Article
CAS
PubMed
PubMed Central
Google Scholar
Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369. https://doi.org/10.1038/sj.gt.3302337
Article
CAS
PubMed
Google Scholar
Ramanathan S, Shenoda BB, Lin Z et al (2019) Inflammation potentiates miR-939 expression and packaging into small extracellular vesicles. J Extracell Vesicles. https://doi.org/10.1080/20013078.2019.1650595
Article
PubMed
PubMed Central
Google Scholar
Ji Y, Han Z, Shao L, Zhao Y (2016) Evaluation of in vivo antitumor effects of low-frequency ultrasound-mediated miRNA-133a microbubble delivery in breast cancer. Cancer Med 5:2534–2543. https://doi.org/10.1002/cam4.840
Article
CAS
PubMed
PubMed Central
Google Scholar
Wischhusen JC, Chowdhury SM, Lee T et al (2020) Ultrasound-mediated delivery of miRNA-122 and anti-miRNA-21 therapeutically immunomodulates murine hepatocellular carcinoma in vivo. J Control Release 321:272–284. https://doi.org/10.1016/J.JCONREL.2020.01.051
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Li B, Yu J et al (2018) Ultrasound microbubbles mediated miR-let-7b delivery into CD133 + ovarian cancer stem cells. Biosci Rep. https://doi.org/10.1042/BSR20180922
Article
PubMed
PubMed Central
Google Scholar
Wan C, Li F, Li H (2015) Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep 12:4803–4814
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopechek JA, McTiernan CF, Chen X et al (2019) Ultrasound and microbubble-targeted delivery of a microRNA inhibitor to the heart suppresses cardiac hypertrophy and preserves cardiac function. Theranostics 9:7088–7098. https://doi.org/10.7150/thno.34895
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen MM, Soreq H, Lahiri DK, Hornstein E (2016) Getting miRNA therapeutics into the target cells for neurodegenerative diseases: a mini-review. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2016.00129
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Chen Y, Wang Y et al (2018) MicroRNA profiling in glaucoma eyes with varying degrees of optic neuropathy by using next-generation sequencing. Investig Ophthalmol Vis Sci 59:2955–2966. https://doi.org/10.1167/iovs.17-23599
Article
CAS
Google Scholar
Souza S, De Almeida T, Horst CH et al (2018) Delivery of miRNA-targeted oligonucleotides in the rat striatum by magnetofection with Neuromag®. Molecules. https://doi.org/10.3390/molecules23071825
Article
PubMed
PubMed Central
Google Scholar
Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy—an overview. J Clin Diagn Res 9:GE01–GE06
PubMed
PubMed Central
Google Scholar
Chakraborty C, Sharma AR, Sharma G, Lee SS (2021) Therapeutic advances of miRNAs: a preclinical and clinical update. J Adv Res 28:127–138
Article
CAS
PubMed
Google Scholar
World Health Organization. WHO traditional medicine strategy. 2014–2023
Axtell MJ, Meyers BC (2018) Revisiting criteria for plant microRNA annotation in the Era of big data. Plant Cell 30:272–284
Article
CAS
PubMed
PubMed Central
Google Scholar
Avni A, Valli AA, Taliansky M et al (2018) Plant small non-coding RNAs and their roles in biotic stresses. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01038
Article
PubMed
PubMed Central
Google Scholar
Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol. https://doi.org/10.1093/gbe/evs002
Article
PubMed
PubMed Central
Google Scholar
Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science (80-) 307:932–935. https://doi.org/10.1126/science.1107130
Article
CAS
Google Scholar
Achkar NP, Cambiagno DA, Manavella PA (2016) miRNA biogenesis: a dynamic pathway. Trends Plant Sci 21:1034–1044
Article
CAS
PubMed
Google Scholar
Yu Y, Jia T, Chen X (2017) The ‘how’ and ‘where’ of plant microRNAs. New Phytol 216:1002–1017
Article
CAS
PubMed
PubMed Central
Google Scholar
Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol. https://doi.org/10.1146/annurev-arplant-050718
Article
PubMed
Google Scholar
Yu D, Lu J, Shao W et al (2019) MepmiRDB: a medicinal plant microRNA database. Database. https://doi.org/10.1093/database/baz070
Article
PubMed
PubMed Central
Google Scholar
Hussein RA, El-Anssary A (2019) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Herbal medicine. IntechOpen
Alshehri B (2021) Plant-derived xenomiRs and cancer: cross-kingdom gene regulation. Saudi J Biol Sci 28:2408–2422. https://doi.org/10.1016/J.SJBS.2021.01.039
Article
CAS
PubMed
PubMed Central
Google Scholar
Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D et al (2020) Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ. https://doi.org/10.7717/peerj.9567
Article
PubMed
PubMed Central
Google Scholar
Cavalieri D, Rizzetto L, Tocci N et al (2016) Plant microRNAs as novel immunomodulatory agents OPEN. Nat Publ Gr. https://doi.org/10.1038/srep25761
Article
Google Scholar
Micó V, Martín R, Lasunción MA et al (2016) Unsuccessful detection of plant microRNAs in beer, extra virgin olive oil and human plasma after an acute ingestion of extra virgin olive oil. Plant Foods Hum Nutr 71:102–108. https://doi.org/10.1007/s11130-016-0534-9
Article
CAS
PubMed
Google Scholar
Sabzehzari M, Naghavi MR (2019) Phyto-miRNA: a molecule with beneficial abilities for plant biotechnology. Gene 683:28–34. https://doi.org/10.1016/J.GENE.2018.09.054
Article
CAS
PubMed
Google Scholar
Fukushima A, Riken J, Pacak AM et al (2019) A bioinformatics approach to explore microRNAs as tools to bridge pathways between plants and animals. Is DNA damage response (DDR) a potential target process? Front Plant Sci. https://doi.org/10.3389/fpls.2019.01535
Article
PubMed
PubMed Central
Google Scholar
Baier SR, Nguyen C, Xie F et al (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers 1–3. J Nutr Biochem Mol Genet Mech. https://doi.org/10.3945/jn.114.196436
Article
Google Scholar
Szcześniak MW, Makabowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt1156
Article
PubMed
Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:155–162. https://doi.org/10.1093/nar/gky1141
Article
CAS
Google Scholar
Hou YH, Jeyaraj A, Zhang X, Wei CL (2017) Absolute quantification of microRNAs in green tea (Camellia sinensis) by stem-loop quantitative real-time PCR. J Sci Food Agric 97:2975–2981. https://doi.org/10.1002/jsfa.8137
Article
CAS
PubMed
Google Scholar
Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005.001
Article
PubMed
PubMed Central
Google Scholar
Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284. https://doi.org/10.1038/ng2135
Article
CAS
PubMed
Google Scholar
Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500. https://doi.org/10.1038/ng1536
Article
CAS
PubMed
Google Scholar
Pirrò S, Minutolo A, Galgani A et al (2016) Bioinformatics prediction and experimental validation of MicroRNAs involved in cross-kingdom interaction. J Comput Biol 23:976–989. https://doi.org/10.1089/cmb.2016.0059
Article
CAS
PubMed
Google Scholar
Fu H, Tie Y, Xu C et al (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Lett 579:3849–3854. https://doi.org/10.1016/j.febslet.2005.05.064
Article
CAS
PubMed
Google Scholar
Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. https://doi.org/10.1093/nar/gkr319
Article
PubMed
PubMed Central
Google Scholar
Patel M, Patel S, Mangukia N et al (2019) Ocimum basilicum miRNOME revisited: a cross kingdom approach. Genomics 111:772–785. https://doi.org/10.1016/j.ygeno.2018.04.016
Article
CAS
PubMed
Google Scholar
Gadhavi H, Patel M, Mangukia N et al (2019) Transcriptome-wide miRNA identification of Bacopa monnieri: a cross-kingdom approach. Plant Signal Behav. https://doi.org/10.1080/15592324.2019.1699265
Article
PubMed
PubMed Central
Google Scholar
Dubey A (2013) Computational prediction of miRNA in Gmelina arborea and their role in human metabolomics. Am J Biosci Bioeng 1:62. https://doi.org/10.11648/j.bio.20130105.12
Article
CAS
Google Scholar
Sinha S, Dixit P, Bhargava S et al (2006) Bark and fruit extracts of Gmelina arborea protect liver cells from oxidative stress. Pharm Biol 44:237–243. https://doi.org/10.1080/13880200600713667
Article
Google Scholar
Abd Karim NA, Ibrahim MD, Kntayya SB et al (2016) Moringa oleifera Lam: targeting chemoprevention. Asian Pac J Cancer Prev 17:3675–3686
Google Scholar
Razis AFA, Ibrahim MD, Kntayya SB (2014) Health benefits of Moringa oleifera. Asian Pac J Cancer Prev 15:8571–8576
Article
Google Scholar
Gonfloni S, Iannizzotto V, Maiani E et al (2014) P53 and Sirt1: routes of metabolism and genome stability. Biochem Pharmacol 92:149–156
Article
CAS
PubMed
Google Scholar
Pirrò S, Zanella L, Kenzo M et al (2016) MicroRNA from Moringa oleifera: identification by high throughput sequencing and their potential contribution to plant medicinal value. PLoS ONE. https://doi.org/10.1371/journal.pone.0149495
Article
PubMed
PubMed Central
Google Scholar
Eddouks M, Maghrani M, Lemhadri A et al (2002) Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J Ethnopharmacol 82:97–103. https://doi.org/10.1016/S0378-8741(02)00164-2
Article
CAS
PubMed
Google Scholar
Tenorio FA, Del Valle L, González A, Pastelín G (2005) Vasodilator activity of the aqueous extract of Viscum album. Fitoterapia 76:204–209. https://doi.org/10.1016/J.FITOTE.2004.12.013
Article
CAS
PubMed
Google Scholar
Xie W, Adolf J, Melzig MF (2017) Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE. https://doi.org/10.1371/journal.pone.0187776
Article
PubMed
PubMed Central
Google Scholar
Singh N, Srivastava S, Sharma A (2016) Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 575:570–576. https://doi.org/10.1016/J.GENE.2015.09.036
Article
CAS
PubMed
Google Scholar
Rameshwari R (2013) In silico prediction of mirna in Curcuma longa and their role in human metabolomics. Int J Adv Biotechnol Res 4(2):253–259. http://www.bipublication.com
CAS
Google Scholar
Kumar D, Kumar S, Ayachit G et al (2017) Cross-kingdom regulation of putative miRNAs derived from happy tree in cancer pathway: a systems biology approach. Int J Mol Sci. https://doi.org/10.3390/ijms18061191
Article
PubMed
PubMed Central
Google Scholar
Jha N, Bhatt D, Patel MK et al (2020) In silico EST data analysis of Curcuma longa: a cross kingdom approach. Int Assoc Biol Comput Digest 5:132–141
Google Scholar
Bhatt DH, Jha N, Johar KS et al (2017) The pharma innovation. Journal 6:543–548
Google Scholar
Oyewole SO, Akinyemi O, Jimoh KA (2018) Medicinal plants and sustainable human health: a review. Hortic Int J. https://doi.org/10.15406/hij.2018.02.00051
Article
Google Scholar
Esatbeyoglu T, Huebbe P, Ernst IMA et al (2012) Curcumin-from molecule to biological function. Angew Chem Int Ed 51:5308–5332
Article
CAS
Google Scholar
Dahmke IN, Backes C, Rudzitis-Auth J et al (2013) Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PLoS ONE. https://doi.org/10.1371/journal.pone.0081122
Article
PubMed
PubMed Central
Google Scholar
Al Perge P, An Nagy Z, Decmann A et al (2017) Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis. RNA Biol. https://doi.org/10.1080/15476286.2016.1251001
Article
Google Scholar
Ivashuta SI, Petrick JS, Heisel SE et al (2009) Endogenous small RNAs in grain: semi-quantification and sequence homology to human and animal genes. Food Chem Toxicol 47:353–360. https://doi.org/10.1016/J.FCT.2008.11.025
Article
CAS
PubMed
Google Scholar
Zhang Y-J, Gan R-Y, Li S et al (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. MDPI. https://doi.org/10.3390/molecules201219753
Article
Google Scholar
Lukasik A, Zielenkiewicz P (2014) Silico identification of plant miRNAs in mammalian breast milk exosomes-a small step forward? PLoS ONE 9:99963. https://doi.org/10.1371/journal.pone.0099963
Article
CAS
Google Scholar
Zhang L, Hou D, Chen X et al (2011) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126. https://doi.org/10.1038/cr.2011.158
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Xu R, Li N (2016) MicroRNAs from plants to animals, do they define a new messenger for communication? Cell Res. https://doi.org/10.1186/s12986-018-0305-8
Article
PubMed
PubMed Central
Google Scholar
Chin AR, Fong MY, Somlo G et al (2016) Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26:217–228. https://doi.org/10.1038/cr.2016.13
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YC, Chen WL, Kung WH, Da HH (2017) Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genom. https://doi.org/10.1186/s12864-017-3502-3
Article
Google Scholar
Liang G, Zhu Y, Sun B et al (2014) Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr 2:380–388. https://doi.org/10.1002/fsn3.113
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Liu D, Zhang X et al (2018) Plant microRNAs in cross-kingdom regulation of gene expression. Int J Mol Sci 19:2007
Article
PubMed Central
Google Scholar
Gebert LFR, Macrae IJ (2018) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-018-0045-7
Article
Google Scholar
Wang J, Mei J, Ren G (2019) Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci. https://doi.org/10.3389/FPLS.2019.00360/FULL
Article
PubMed
PubMed Central
Google Scholar
Jiang M, Sang X, Hong Z (2012) Beyond nutrients: food-derived microRNAs provide cross-kingdom regulation. BioEssays 34:280–284. https://doi.org/10.1002/bies.201100181
Article
CAS
PubMed
Google Scholar
Ni Y, Jensen K, Kouskoumvekaki I, Panagiotou G (2017) Database tool NutriChem 2.0: exploring the effect of plant-based foods on human health and drug efficacy. Database 2017:44. https://doi.org/10.1093/database/bax044
Article
CAS
Google Scholar
Mlotshwa S, Pruss GJ, MacArthur JL et al (2015) A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Nat Publ Gr. https://doi.org/10.1038/cr.2015.25
Article
Google Scholar
Carney MC, Tarasiuk A, Diangelo SL et al (2017) Metabolism-related microRNAs in maternal breast milk are influenced by premature delivery. Nat Publ Gr. https://doi.org/10.1038/pr.2017.54
Article
Google Scholar
Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741. https://doi.org/10.1373/clinchem.2010.147405
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Q, Li M, Wang X et al (2012) Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 8:118–123
Article
CAS
PubMed
Google Scholar
Zhou Z, Li X, Liu J et al (2015) Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res 25:39–49. https://doi.org/10.1038/cr.2014.130
Article
CAS
PubMed
Google Scholar
World Health Organization WHO Corona virus Dashboard
Chauhan N, Jaggi M, Chauhan SC, Yallapu MM (2021) COVID-19: fighting the invisible enemy with microRNAs. Expert Rev Anti Infect Ther 19:137–145
Article
CAS
PubMed
Google Scholar
Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Canatan D (2020) The impact of microRNAs (miRNAs) on the genotype of coronaviruses. Acta Biomed 91:195–198. https://doi.org/10.23750/abm.v91i2.9534
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L-K, Zhou Z, Jiang X-M et al (2020) Cell discovery absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov 6:54. https://doi.org/10.1038/s41421-020-00197-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Song KH, Li T, Owsley E, Chiang JYL (2010) A putative role of micro RNA in regulation of cholesterol 7α-hydroxylase expression in human hepatocytes. J Lipid Res 51:2223–2233. https://doi.org/10.1194/jlr.M004531
Article
CAS
PubMed
PubMed Central
Google Scholar
Komagata S, Nakajima M, Takagi S et al (2009) Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol Pharmacol 76:702–709. https://doi.org/10.1124/mol.109.056986
Article
CAS
PubMed
Google Scholar
Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P (2008) Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 29:2394–2399. https://doi.org/10.1093/carcin/bgn209
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu H, Wu H, Liu X et al (2008) Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76:582–588. https://doi.org/10.1016/j.bcp.2008.06.007
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Z, Zhong Z, Yang L et al (2014) MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Lett 343:249–257. https://doi.org/10.1016/j.canlet.2013.09.034
Article
CAS
PubMed
Google Scholar
Pan Y-Z, Zhou A, Hu Z, Yu A-M (2013) Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1. Drug Metab Dispos. https://doi.org/10.1124/dmd.113.052092
Article
PubMed
PubMed Central
Google Scholar
Chen KC, Hsi E, Hu CY et al (2012) MicroRNA-328 may influence myopia development by mediating the PAX6 gene. Investig Ophthalmol Vis Sci 53:2732–2739. https://doi.org/10.1167/iovs.11-9272
Article
CAS
Google Scholar
Jeon HM, Sohn YW, Oh SY et al (2011) ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 71:3410–3421. https://doi.org/10.1158/0008-5472.CAN-10-3340
Article
CAS
PubMed
Google Scholar
Zhu Y, Yu F, Jiao Y et al (2011) Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 17:7105–7115. https://doi.org/10.1158/1078-0432.CCR-11-0071
Article
CAS
PubMed
Google Scholar
Bruhn O, Lindsay M, Wiebel F et al (2020) Alternative polyadenylation of ABC transporters of the C-family (ABCC1, ABCC2, ABCC3) and implications on posttranscriptional micro-RNA regulations. Mol Pharmacol Mol Pharmacol 97:112–122. https://doi.org/10.1124/mol.119.116590
Article
CAS
PubMed
Google Scholar
Dhuri K, Bechtold C, Quijano E et al (2020) Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med 9:1–24
Article
Google Scholar
Title AC, Denzler R, Stoffel M (2015) Uptake and function studies of maternal milk-derived MicroRNAs. J Biol Chem 290:23680–23691. https://doi.org/10.1074/jbc.M115.676734
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Dai GH, Ren ZM et al (2016) Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice. Biomed Res Int. https://doi.org/10.1155/2016/5413849
Article
PubMed
PubMed Central
Google Scholar
Pastrello C, Tsay M, Mcquaid R et al (2016) Circulating plant miRNAs can regulate human gene expression in vitro. Nat Publ Gr. https://doi.org/10.1038/srep32773
Article
Google Scholar
Hou D, He F, Ma L et al (2018) The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem 57:197–205. https://doi.org/10.1016/J.JNUTBIO.2018.03.026
Article
CAS
PubMed
Google Scholar