Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157. https://doi.org/10.1016/j.diabres.2019.107843
Kharroubi AT (2015) Diabetes mellitus: the epidemic of the century. World J Diabetes 6:850. https://doi.org/10.4239/wjd.v6.i6.850
Article
PubMed
PubMed Central
Google Scholar
Bahia LR, Araujo DV, Schaan BD, Dib SA, Negrato CA, Leo MPS, Ramos AJS, Forti AC, Gomes MB, Foss MC, Monteiro RA, Sartorelli D, Franco LJ (2011) The costs of type 2 diabetes mellitus outpatient care in the Brazilian Public Health System. Value Heal 14:S137–S140. https://doi.org/10.1016/j.jval.2011.05.009
Article
Google Scholar
Yang W, Dall TM, Beronjia K, Lin J, Semilla AP, Chakrabarti R, Hogan PF, Petersen MP (2018) Economic costs of diabetes in the U.S. in 2017. Diabetes Care 41:917–928. https://doi.org/10.2337/dci18-0007
Article
Google Scholar
Low Wang CC, Hess CN, Hiatt WR, Goldfine AB (2016) Clinical update: cardiovascular disease in diabetes mellitus. Circulation 133:2459–2502
Article
CAS
PubMed
PubMed Central
Google Scholar
Centers for Disease Control and Prevention (2014) National Diabetes Statistics Report: estimates of diabetes and its burden in the United States. US Dep Heal Hum Serv 2014, Report no: CS 314227-A
Russo GT, Baggio G, Rossi MC, Kautzky-Willer A (2015) Type 2 diabetes and cardiovascular risk in women. Int J Endocrinol 39:558–568
Schmidt AM (2019) Diabetes mellitus and cardiovascular disease. Arterioscler Thromb Vasc Biol 39:558–568
Article
CAS
PubMed
PubMed Central
Google Scholar
Naser KA, Gruber A, Thomson GA (2006) The emerging pandemic of obesity and diabetes: are we doing enough to prevent a disaster? Int J Clin Pract. 60:1093–1097
Article
CAS
PubMed
Google Scholar
Cercato C, Fonseca FA (2019) Cardiovascular risk and obesity. Diabetol Metab Syndr. 11:74
Article
CAS
PubMed
PubMed Central
Google Scholar
Arner P, Rydén M (2015) Fatty acids, obesity and insulin resistance. Obes Facts 8:147–155. https://doi.org/10.1159/000381224
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguiar C, Duarte R, Carvalho D (2019) New approach to diabetes care: from blood glucose to cardiovascular disease. Rev Port Cardiol 38:53–63. https://doi.org/10.1016/j.repce.2019.01.001
Article
PubMed
Google Scholar
Szekely Y, Arbel Y (2018) A review of interleukin-1 in heart disease: where do we stand today? Cardiol Ther 7:25–44. https://doi.org/10.1007/s40119-018-0104-3
Article
PubMed
PubMed Central
Google Scholar
Leifheit-Nestler M, Wagner NM, Gogiraju R, Didié M, Konstantinides S, Hasenfuss G, Schäfer K (2013) Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity. J Transl Med 11:170. https://doi.org/10.1186/1479-5876-11-170
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo JW, Zheng X, Cheng GC, Ye QH, Deng YZ, Wu L (2016) Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes. Biomed Rep 5:473–478. https://doi.org/10.3892/br.2016.749
Article
CAS
PubMed
PubMed Central
Google Scholar
Adiloğlu S, I, Yu C, Chen R, Li JJ, Li JJ, Drahansky M, Paridah M., Moradbak A, Mohamed A., Owolabi, FolaLi H abdulwahab taiwo, Asniza M, Abdul Khalid SH., Sharma T, Dohare N, Kumari M, Singh UK, Khan AB, Borse MS, Patel R, Paez A, Howe A, Goldschmidt D, Corporation C, Coates J, Reading F (2012) We are IntechOpen, the world’s leading publisher of open access books built by scientists, for scientists TOP 1%. Intech i:13. doi: https://doi.org/10.1016/j.colsurfa.2011.12.014
Mamo Y, Bekele F, Nigussie T, Zewudie A (2019) Determinants of poor glycemic control among adult patients with type 2 diabetes mellitus in Jimma University Medical Center, Jimma zone, south west Ethiopia: a case control study. BMC Endocr Disord 19:1–11. https://doi.org/10.1186/s12902-019-0421-0
Article
CAS
Google Scholar
Mezza T, Cinti F, Cefalo CMA, Pontecorvi A, Kulkarni RN, Giaccari A (2019) B-cell fate in human insulin resistance and type 2 diabetes: a perspective on islet plasticity. Diabetes 68:1121–1129
Article
CAS
PubMed
PubMed Central
Google Scholar
Ragheb RM, Medhat A (2011) Mechanisms of fatty acid-induced insulin resistance in muscle and liver. J Diabetes Metab 02: doi: https://doi.org/10.4172/2155-6156.1000127
Konigorski S, Janke J, Drogan D, Bergmann MM, Hierholzer J, Kaaks R, Boeing H, Pischon T (2019) Prediction of circulating adipokine levels based on body fat compartments and adipose tissue gene expression. Obes Facts 12:590–605. https://doi.org/10.1159/000502117
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, Swierczynska MM, Jenö P, Beglinger C, Peterli R, Hall MN (2018) Insulin resistance causes inflammation in adipose tissue. J Clin Invest 128:1538–1550. https://doi.org/10.1172/JCI96139
Article
PubMed
PubMed Central
Google Scholar
Rasooly RS, Akolkar B, Spain LM, Guill MH, Del Vecchio CT, Carroll LE (2015) The national institute of diabetes and digestive and kidney diseases central repositories: a valuable resource for nephrology research. Clin J Am Soc Nephrol 10:710–715. https://doi.org/10.2215/CJN.06570714
Article
PubMed
Google Scholar
Shaikh A (2017) A practical approach to hypertension management in diabetes. Diabetes Ther. 8:981–989
Article
PubMed
PubMed Central
Google Scholar
Kostis JB, Wilson AC, Freudenberger RS, Cosgrove NM, Pressel SL, Davis BR (2005) Long-term effect of diuretic-based therapy on fatal outcomes in subjects with isolated systolic hypertension with and without diabetes. Am J Cardiol 95:29–35. https://doi.org/10.1016/j.amjcard.2004.08.059
Article
CAS
PubMed
Google Scholar
K V, Mohammed M (2014) Prevalence of hypertension in type-2 diabetes mellitus. CHRISMED J Heal Res 1:223 . doi: https://doi.org/10.4103/2348-3334.142981
Group TDC and CTR (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986. https://doi.org/10.1056/NEJM199309303291401
Article
Google Scholar
Vogt L, Roelofs JJ (2019) Introduction to pathogenetic mechanisms of diabetic nephropathy. In: Diabetic Nephropathy. Springer International Publishing, Cham pp 83–87
Okada H, Watanabe Y, Kikuta T, Kobayashi T, Kanno Y, Sugaya T, Suzuki H (2004) Bradykinin decreases plasminogen activator inhibitor-1 expression and facilitates matrix degradation in the renal tubulointerstitium under angiotensin-converting enzyme blockade. J Am Soc Nephrol 15:2404–2413. https://doi.org/10.1097/01.ASN.0000136132.20189.95
Article
CAS
PubMed
Google Scholar
Cheung BMY (2011) Drug treatment for obesity in the post-sibutramine era. Drug Saf. 34:641–650
Article
CAS
PubMed
Google Scholar
Cheung BMY, Li C (2012) Diabetes and hypertension: is there a common metabolic pathway? Curr Atheroscler Rep. 14:160–166
Article
CAS
PubMed
PubMed Central
Google Scholar
Qazi MU, Malik S (2013) Diabetes and cardiovascular disease: insights from the Framingham Heart Study. Glob Heart 8:43–48
Article
PubMed
Google Scholar
Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H (2016) Diabetes dyslipidemia. Diabetes Ther. 7:203–219
Article
CAS
PubMed
PubMed Central
Google Scholar
Abd-Allha E, Hassan B, Abduo M, Omar S, Sliem H (2014) Small dense low-density lipoprotein as a potential risk factor of nephropathy in type 2 diabetes mellitus. Indian J Endocrinol Metab 18:94–98. https://doi.org/10.4103/2230-8210.126585
Article
CAS
PubMed
PubMed Central
Google Scholar
De Ferranti SD, De Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, Magge SN, Marx N, McGuire DK, Orchard TJ, Zinman B, Eckel RH (2014) Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care 37:2843–2863
Article
PubMed
PubMed Central
Google Scholar
Krauss RM (2004) Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27:1496–1504. https://doi.org/10.2337/diacare.27.6.1496
Article
CAS
PubMed
Google Scholar
Wu L, Parhofer KG (2014) Diabetic dyslipidemia. Metabolism. 63:1469–1479
Article
CAS
PubMed
Google Scholar
Ginsberg HN, Maccallum PR (2009) The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. J. Cardiometab. Syndr. 4:113–119
Article
PubMed
PubMed Central
Google Scholar
Sheth J, Shah A, Sheth F, Trivedi S, Nabar N, Shah N, Thakor P, Vaidya R (2015) The association of dyslipidemia and obesity with glycated hemoglobin. Clin Diabetes Endocrinol 1:6. https://doi.org/10.1186/s40842-015-0004-6
Article
PubMed
PubMed Central
Google Scholar
Bays HE, Maki KC, McKenney J, Snipes R, Meadowcroft A, Schroyer R, Doyle RT, Stein E (2010) Long-term up to 24-month efficacy and safety of concomitant prescription omega-3-acid ethyl esters and simvastatin in hypertriglyceridemic patients. Curr Med Res Opin 26:907–915. https://doi.org/10.1185/03007991003645318
Article
CAS
PubMed
Google Scholar
Jain R, Olejas S, Davey S, Jain R, Shoghli R (2019) Diabetes & dyslipidaemia goals in management of diabetes. J Diab Metab Disord Control 6:99–102. https://doi.org/10.15406/jdmdc.2019.06.00189
Article
Google Scholar
Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122:624–638
Article
CAS
PubMed
PubMed Central
Google Scholar
Negishi K (2018) Echocardiographic feature of diabetic cardiomyopathy: where are we now? Cardiovasc Diagn Ther. 8:47–56
Article
PubMed
PubMed Central
Google Scholar
Santra S, Basu AK, Roychowdhury P, Banerjee R, Singhania P, Singh S, Datta UK (2011) Comparison of left ventricular mass in normotensive type 2 diabetes mellitus patients with that in the nondiabetic population. J Cardiovasc Dis Res 2:50–56. https://doi.org/10.4103/0975-3583.78597
Article
PubMed
PubMed Central
Google Scholar
Hall ME, Harmancey R, Stec DE (2015) Lean heart: role of leptin in cardiac hypertrophy and metabolism. World J Cardiol 7:511. https://doi.org/10.4330/wjc.v7.i9.511
Article
PubMed
PubMed Central
Google Scholar
Lebeche D (2015) Diabetic cardiomyopathy: is resistin a culprit? Cardiovasc Diagn Ther 5:387–38793. https://doi.org/10.3978/j.issn.2223-3652.2015.05.04
Article
PubMed
PubMed Central
Google Scholar
Patel S, Chauhan H, Amin G (2017) Diastolic dysfunction in asymptomatic type 2 diabetes mellitus (OK)tk.pdf. Echocardiogr. NJIRM 8:66–70
Google Scholar
Bergerot C, Davidsen ES, Amaz C, Thibault H, Altman M, Bellaton A, Moulin P, Derumeaux G, Ernande L (2018) Diastolic function deterioration in type 2 diabetes mellitus: predictive factors over a 3-year follow-up. Eur Heart J Cardiovasc Imaging 19:67–73. https://doi.org/10.1093/ehjci/jew331
Article
PubMed
Google Scholar
Tacito LHB, Pires AC, Yugar-Toledo JC (2017) Impaired flow-mediated dilation response and carotid intima-media thickness in patients with type 1 diabetes mellitus with a mean disease duration of 4.1 years. Arch Endocrinol Metab 61:542–549. https://doi.org/10.1590/2359-3997000000281
Article
PubMed
Google Scholar
Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–1700. https://doi.org/10.1096/fj.04-2263com
Article
CAS
PubMed
Google Scholar
Aasum E, Hafstad AD, Severson DL, Larsen TS (2003) Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441. https://doi.org/10.2337/diabetes.52.2.434
Article
CAS
PubMed
Google Scholar
Gao Y, Ren Y, Guo YK, Liu X, Xie LJ, Jiang L, Shen MT, Deng MY, Yang ZG (2020) Metabolic syndrome and myocardium steatosis in subclinical type 2 diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Cardiovasc Diabetol 19:70. https://doi.org/10.1186/s12933-020-01044-1
Article
CAS
PubMed
PubMed Central
Google Scholar
McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175. https://doi.org/10.1161/CIRCULATIONAHA.106.645614
Article
PubMed
Google Scholar
Bax JJ, Young LH, Frye RL, Bonow RO, Steinberg HO, Barrett EJ (2007) Screening for coronary artery disease in patients with diabetes. In: Diabetes Care. American Diabetes Association, pp 2729–2736
Google Scholar
Yu CM, Chau E, Sanderson JE, Fan K, Tang MO, Fung WH, Lin H, Kong SL, Lam YM, Hill MRS, Lau CP (2002) Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 105:438–445. https://doi.org/10.1161/hc0402.102623
Article
PubMed
Google Scholar
Ng AC, Delgado V, Bertini M, Ewe SH, van der Meer RW, Rijzewijk LJ, Siebelink H-M, Smit JW, Diamant M, Romijn JA, de Roos A, Leung DY, Lamb HJ, Bax JJ (2010) Myocardial steatosis and left ventricular strain and strain rate imaging in patients with type 2 mellitus. J Am Coll Cardiol 55:A93.E880. https://doi.org/10.1016/s0735-1097(10)60881-9
Article
Google Scholar
Ng ACT, Delgado V, Bertini M, Van Der Meer RW, Rijzewijk LJ, Hooi Ewe S, Siebelink HM, Smit JWA, Diamant M, Romijn JA, De Roos A, Leung DY, Lamb HJ, Bax JJ (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122:2538–2544. https://doi.org/10.1161/CIRCULATIONAHA.110.955542diabetes
Article
PubMed
Google Scholar
Ringle A, Dornhorst A, Rehman MB, Ruisanchez C, Nihoyannopoulos P (2017) Evolution of subclinical myocardial dysfunction detected by two-dimensional and three-dimensional speckle tracking in asymptomatic type 1 diabetic patients: a long-term follow-up study. Echo Res Pract 4:73–81. https://doi.org/10.1530/ERP-17-0052
Article
PubMed
PubMed Central
Google Scholar
Paolillo S, Rengo G, Pagano G, Pellegrino T, Savarese G, Femminella GD, Tuccillo M, Boemio A, Attena E, Formisano R, Petraglia L, Scopacasa F, Galasso G, Leosco D, Trimarco B, Cuocolo A, Perrone-Filardi P (2013) Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. Diabetes Care 36:2395–2401. https://doi.org/10.2337/dc12-2147
Article
CAS
PubMed
PubMed Central
Google Scholar
Regan TJ, Lyons MM, Ahmed SS (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:885–899. https://doi.org/10.1172/JCI108843
Article
PubMed Central
Google Scholar
Tribouilloy C, Rusinaru D, Mahjoub H, Tartière JM, Kesri-Tartière L, Godard S, Peltier M (2008) Prognostic impact of diabetes mellitus in patients with heart failure and preserved ejection fraction: a prospective five-year study. Heart 94:1450–1455. https://doi.org/10.1136/hrt.2007.128769
Article
CAS
PubMed
Google Scholar
Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA (2018) Heart Failure with preserved ejection fraction in diabetes: mechanisms and management. Can J Cardiol. 34:632–643
Article
PubMed
Google Scholar
Wilkinson MJ, Zadourian A, Taub PR (2019) Heart failure and diabetes mellitus: defining the problem and exploring the interrelationship. Am J Cardiol. 124:S3–S11
Article
CAS
PubMed
Google Scholar
Spallone V (2019) Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab. J. 43:3–30
Article
PubMed
Google Scholar
Moningi S, Nikhar S, Ramachandran G (2018) Autonomic disturbances in diabetes: assessment and anaesthetic implications. Indian J Anaesth. 62:575–583
Article
CAS
PubMed
PubMed Central
Google Scholar
Agashe S, Petak S (2018) Cardiac autonomic neuropathy in diabetes mellitus. Methodist Debakey Cardiovasc. J. 14:251–256
PubMed
PubMed Central
Google Scholar
Fisher VL, Tahrani AA (2017) Cardiac autonomic neuropathy in patients with diabetes mellitus: current perspectives. Diabetes, Metab. Syndr. Obes. Targets Ther. 10:419–434
CAS
Google Scholar
Ait-Oufella H, Taleb S, Mallat Z, Tedgui A (2011) Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol 31:969–979. https://doi.org/10.1161/ATVBAHA.110.207415
Article
CAS
PubMed
Google Scholar
Vinik AI, Maser RE, Ziegler D (2011) Autonomic imbalance: prophet of doom or scope for hope? Diabet Med 28:643–651. https://doi.org/10.1111/j.1464-5491.2010.03184.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Lampert R, Bremner JD, Su S, Miller A, Lee F, Cheema F, Goldberg J, Vaccarino V (2008) Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am Heart J 156:759.e1–759.e7. https://doi.org/10.1016/j.ahj.2008.07.009
Article
Google Scholar
Prince CT, Secrest AM, Mackey RH, Arena VC, Kingsley LA, Orchard TJ (2010) Cardiovascular autonomic neuropathy, HDL cholesterol, and smoking correlate with arterial stiffness markers determined 18 years later in type 1 diabetes. Diabetes Care 33:652–657. https://doi.org/10.2337/dc09-1936
Article
CAS
PubMed
Google Scholar
Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, Low P, Valensi P (2011) Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 27:639–653
Article
PubMed
Google Scholar
Schmid H (2007) Cardiovascular impact of the autonomic neuropathy of diabetes mellitus. Arq Bras Endocrinol Metabol. 51:232–243
Article
PubMed
Google Scholar
Pop-Busui R (2010) Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care 33:434–441
Article
PubMed
PubMed Central
Google Scholar
Vinik AI, Erbas T, Casellini CM (2013) Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J. Diabetes Investig. 4:4–18
Article
CAS
PubMed
PubMed Central
Google Scholar
Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820
Article
CAS
PubMed
Google Scholar
Rhee SY, Kim YS (2018) The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab J 42:188–195. https://doi.org/10.4093/dmj.2017.0105
Article
PubMed
PubMed Central
Google Scholar
Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, Lee A, Al-Abed Y, Vlassara H, Bucala R, Cerami A (1997) Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A 94:13915–13920. https://doi.org/10.1073/pnas.94.25.13915
Article
CAS
PubMed
PubMed Central
Google Scholar
Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 94:6474–6479. https://doi.org/10.1073/pnas.94.12.6474
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholl ID, Stitt AW, Moore JE, Ritchie AJ, Archer DB, Bucala R (1998) Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol Med 4:594–601. https://doi.org/10.1007/bf03401759
Article
CAS
PubMed
PubMed Central
Google Scholar
Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ (2002) Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A 99:15596–15601. https://doi.org/10.1073/pnas.242407999
Article
CAS
PubMed
PubMed Central
Google Scholar
Schalkwijk CG, Miyata T (2012) Early- and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics. Amino Acids 42:1193–1204
Article
CAS
PubMed
Google Scholar
Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P (2018) The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 28:337–352
Article
CAS
PubMed
PubMed Central
Google Scholar
Makita Z, Bucala R, Rayfield EJ, Fuh H, Manogue KR, Cerami A, Viassara H, Friedman EA, Kaufman AM, Korbet SM, Barth RH, Winston JA (1994) Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet 343:1519–1522. https://doi.org/10.1016/S0140-6736(94)92935-1
Article
CAS
PubMed
Google Scholar
Soulis-Liparota T, Cooper ME, Dunlop M, Jerums G (1995) The relative roles of advanced glycation, oxidation and aldose reductase inhibition in the development of experimental diabetic nephropathy in the Sprague-Dawley rat. Diabetologia 38:387–394. https://doi.org/10.1007/BF00410275
Article
CAS
PubMed
Google Scholar
Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G, Cooper ME (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863. https://doi.org/10.1172/JCI11951
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Chen LJ, Yu J, Wang HJ, Zhang F, Liu Q, Wu J (2018) Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy. Cell Physiol Biochem 48:705–717
Article
CAS
PubMed
Google Scholar
Stitt AW (2001) Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol 85:746–753
Article
CAS
PubMed
PubMed Central
Google Scholar
Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150:523–531
CAS
PubMed
PubMed Central
Google Scholar
Stitt AW, Bhaduri T, McMullen CBT, Gardiner TA, Archer DB (2000) Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol Cell Biol Res Commun 3:380–388. https://doi.org/10.1006/mcbr.2000.0243
Article
CAS
PubMed
Google Scholar
Chen AS, Taguchi T, Sugiura M, Wakasugi Y, Kamei A, Wang MW, Miwa I (2004) Pyridoxal-aminoguanidine adduct is more effective than aminoguanidine in preventing neuropathy and cataract in diabetic rats. Horm Metab Res 36:183–187. https://doi.org/10.1055/s-2004-814344
Article
CAS
PubMed
Google Scholar
Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L (2018) The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med 24(1):59
Sobenin IA, Tertov VV, Koschinsky T, Bünting CE, Slavina ES, Dedovc II, Orekhov AN (1993) Modified low density lipoprotein from diabetic patients causes cholesterol accumulation in human intimal aortic cells. Atherosclerosis 100:41–54. https://doi.org/10.1016/0021-9150(93)90066-4
Article
CAS
PubMed
Google Scholar
Linssen PBC, Henry RMA, Schalkwijk CG, Dekker JM, Nijpels G, Brunner-La Rocca HP, Stehouwer CDA (2016) Serum advanced glycation endproducts are associated with left ventricular dysfunction in normal glucose metabolism but not in type 2 diabetes: the Hoorn Study. Diabetes Vasc Dis Res 13:278–285. https://doi.org/10.1177/1479164116640680
Article
CAS
Google Scholar
Lapolla A, Piarulli F, Sartore G, Ceriello A, Ragazzi E, Reitano R, Baccarin L, Laverda B, Fedele D (2007) Advanced glycation end products and antioxidant status in type 2 diabetic patients with and without peripheral artery disease. Diabetes Care 30:670–676. https://doi.org/10.2337/dc06-1508
Article
CAS
PubMed
Google Scholar
Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K (2001) Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens. 14:475–486
Article
CAS
PubMed
Google Scholar
Saxena S, Mishra A, Saxena A, Natu SM (2012) Advanced glycation end products and diabetic retinopathy Yashodhara Sharma1. J Ocul Biol Dis Infor 5:63–69. https://doi.org/10.1007/s12177-013-9104-7
Article
PubMed
Google Scholar
Ma RC (2016) Genetics of cardiovascular and renal complications in diabetes. J Diabetes Investig 7:139–154. https://doi.org/10.1111/jdi.12391
Article
CAS
PubMed
Google Scholar
Pradeepa R, Nazir A, Mohan V (2014) Type 2 diabetes and cardiovascular diseases: do they share a common soil? The Asian Indian experience. Heart Asia 4:69–76. https://doi.org/10.1136/heartasia-2011-010081
Article
Google Scholar
De Rosa S, Curcio A, Indolfi C (2014) Emerging role of micrornas in cardiovascular diseases. Circ J. 78:567–575
Article
PubMed
CAS
Google Scholar
Gareri C, De Rosa S, Indolfi C (2016) MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 118:1170–1184
Article
CAS
PubMed
Google Scholar
Association AD (2018) Classification and diagnosis of diabetes: standards of medical care in Diabetes 2018. Diabetes Care 41:S13–S27. https://doi.org/10.2337/dc18-S002
Article
Google Scholar
O’Donnell CJ, Nabel EG (2011) Genomics of cardiovascular disease. N Engl J Med 365:2098–2109. https://doi.org/10.1056/nejmra1105239
Article
PubMed
Google Scholar
Besseling J, Kastelein JJP, Defesche JC, Hutten BA, Hovingh GK (2015) Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 313:1029–1036. https://doi.org/10.1001/jama.2015.1206
Article
CAS
PubMed
Google Scholar
Wang X, Strizich G, Hu Y, Wang T, Kaplan RC, Qi Q (2016) Genetic markers of type 2 diabetes: progress in genome-wide association studies and clinical application for risk prediction. J Diabetes 8:24–35
Article
PubMed
Google Scholar
Kumar D (2018) Introduction to Genes, Genome and Inheritance. In: Kumar D., Elliott P. (eds) Cardiovascular Genetics and Genomics. Springer, Cham. https://doi.org/10.1007/978-3-319-66114-8_1
Muendlein A, Saely CH, Geller-Rhomberg S, Sonderegger G, Rein P, Winder T, Beer S, Vonbank A, Drexel H (2011) Single nucleotide polymorphisms of TCF7L2 are linked to diabetic coronary atherosclerosis. Plos One 6:e17978. https://doi.org/10.1371/journal.pone.0017978
Article
CAS
PubMed
PubMed Central
Google Scholar
Sousa AGP, Marquezine GF, Lemos PA, Martinez E, Lopes N, Hueb WA, Krieger JE, Pereira AC (2009) TCF7L2 polymorphism rs7903146 is associated with coronary artery disease severity and mortality. Plos One 4:e7697. https://doi.org/10.1371/journal.pone.0007697
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi L, Parast L, Cai T, Powers C, Gervino EV, Hauser TH, Hu FB, Doria A (2011) Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J Am Coll Cardiol 58:2675–2682. https://doi.org/10.1016/j.jacc.2011.08.054
Article
CAS
PubMed
PubMed Central
Google Scholar
De Rosa S, Chiefari E, Salerno N, Ventura V, D’Ascoli GL, Arcidiacono B, Ambrosio G, Bilotta FL, Torella D, Foti D, Indolfi C, Brunetti A (2017) HMGA1 is a novel candidate gene for myocardial infarction susceptibility. Int J Cardiol 227:331–334. https://doi.org/10.1016/j.ijcard.2016.11.088
Article
PubMed
Google Scholar
Chiefari E, Tanyolaç S, Paonessa F, Pullinger CR, Capula C, Iiritano S, Mazza T, Forlin M, Fusco A, Durlach V, Durlach A, Malloy MJ, Kane JP, Heiner SW, Filocamo M, Foti DP, Goldfine ID, Brunetti A (2011) Functional variants of the HMGA1 gene and type 2 diabetes mellitus. JAMA 305:903–912. https://doi.org/10.1001/jama.2011.207
Article
CAS
PubMed
Google Scholar
Ruiz J, Morabia A, Blanche H, James RW, Garin MCB, Charpentier G, Passa P, Vaisse C, Ruiz J, Froguel P (1995) Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet 346:869–872. https://doi.org/10.1016/S0140-6736(95)92709-3
Article
CAS
PubMed
Google Scholar
Serrato M, Marian AJ (1995) A variant of human paraoxonase/arylesterase (HUMPONA) gene is a risk factor for coronary artery disease. J Clin Invest 96:3005–3008. https://doi.org/10.1172/JCI118373
Article
CAS
PubMed
PubMed Central
Google Scholar
Bacci S, Menzaghi C, Ercolino T, Ma X, Rauseo A, Salvemini L, Vigna C, Fanelli R, Di Mario U, Doria A, Trischitta V (2004) The +276 G/T single nucleotide polymorphism of the adiponectin gene is associated with coronary artery disease in type 2 diabetic patients. Diabetes Care 27:2015–2020. https://doi.org/10.2337/diacare.27.8.2015
Article
CAS
PubMed
Google Scholar
Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. J Am Med Assoc 288:2709–2716. https://doi.org/10.1001/jama.288.21.2709
Article
Google Scholar
Malik S, Wong ND, Franklin SS, Kamath TV, L’Italien GJ, Pio JR, Williams GR (2004) Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110:1245–1250. https://doi.org/10.1161/01.CIR.0000140677.20606.0E
Article
PubMed
Google Scholar
Piché ME, Tchernof A, Després JP (2020) Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res:1477–1500. https://doi.org/10.1161/CIRCRESAHA.120.316101
Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234. https://doi.org/10.1056/NEJM199807233390404
Article
CAS
PubMed
Google Scholar
James WPT, Caterson ID, Coutinho W, Finer N, Van Gaal LF, Maggioni AP, Torp-Pedersen C, Sharma AM, Shepherd GM, Rode RA, Renz CL (2010) Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med 363:905–917. https://doi.org/10.1056/NEJMoa1003114
Article
CAS
PubMed
Google Scholar
Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Coday M, Crow RS, Curtis JM, Egan CM, Espeland MA, Evans M, Foreyt JP, Ghazarian S, Gregg EW, Harrison B, Hazuda HP, Hill JO, Horton ES, Van Hubbard S, Jakicic JM, Jeffery RW, Johnson KC, Kahn SE, Kitabchi AE, Knowler WC, Lewis CE, Maschak-Carey BJ, Montez MG, Murillo A, Nathan DM, Patricio J, Peters A, Pi-Sunyer X, Pownall H, Reboussin D, Regensteiner JG, Rickman AD, Ryan DH, Safford M, Wadden TA, Wagenknecht LE, West DS, Williamson DF, Yanovski SZ (2013) Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 369:145–154. https://doi.org/10.1056/NEJMoa1212914
Article
CAS
PubMed
Google Scholar
Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Aunola S, Cepaitis Z, Moltchanov V, Hakumäki M, Mannelin M, Martikkala V, Sundvall J, Uusitupa M (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350. https://doi.org/10.1056/nejm200105033441801
Article
CAS
PubMed
Google Scholar
Aroda VR, Ratner RE (2018) Metformin and type 2 diabetes prevention. Diabetes Spectr 31:336–342. https://doi.org/10.2337/ds18-0020
Article
PubMed
PubMed Central
Google Scholar
Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, Loria CM, Millen BE, Nonas CA, Pi-Sunyer FX, Stevens J, Stevens VJ, Wadden TA, Wolfe BM, Yanovski SZ (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of cardiology/American Heart Association task force on practice guidelines and the obesity society. Circulation 129:S102–S138. https://doi.org/10.1161/01.cir.0000437739.71477.ee
Article
PubMed
Google Scholar
Blüher M, Laufs U (2019) New concepts for body shape-related cardiovascular risk: role of fat distribution and adipose tissue function. Eur. Heart J. 40:2856–2858
Article
PubMed
Google Scholar
Neeland IJ, Ross R, Després JP, Matsuzawa Y, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault B, Cuevas A, Hu FB, Griffin B, Zambon A, Barter P, Fruchart JC, Eckel RH (2019) Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 7:715–725
Article
PubMed
Google Scholar
Ghosh RK, Ghosh GC, Gupta M, Bandyopadhyay D, Akhtar T, Deedwania P, Lavie CJ, Fonarow GC, Aneja A (2019) Sodium glucose co-transporter 2 inhibitors and heart failure. Am J Cardiol 124:1790–1796
Article
CAS
PubMed
Google Scholar
Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsboll T (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844. https://doi.org/10.1056/NEJMoa1607141
Article
CAS
PubMed
Google Scholar
Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31–39. https://doi.org/10.1016/S0140-6736(18)32590-X
Article
CAS
PubMed
Google Scholar
Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, Pagidipati NJ, Chan JC, Gustavson SM, Iqbal N, Maggioni AP, Öhman P, Poulter NR, Ramachandran A, Zinman B, Hernandez AF, Holman RR (2018) Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 6:105–113. https://doi.org/10.1016/S2213-8587(17)30412-6
Article
PubMed
Google Scholar
Padwal R, Klarenbach S, Wiebe N, Birch D, Karmali S, Manns B, Hazel M, Sharma AM, Tonelli M (2011) Bariatric surgery: a systematic review and network meta-analysis of randomized trials. Obes. Rev. 12:602–621
Article
CAS
PubMed
Google Scholar
Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, Navaneethan SD, Singh RP, Pothier CE, Nissen SE, Kashyap SR (2017) Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med 376:641–651. https://doi.org/10.1056/NEJMoa1600869
Article
PubMed
PubMed Central
Google Scholar
Angrisani L, Santonicola A, Iovino P, Vitiello A, Zundel N, Buchwald H, Scopinaro N (2017) Bariatric surgery and endoluminal procedures: IFSO Worldwide Survey 2014. Obes Surg 27:1–11. https://doi.org/10.1007/s11695-017-2666-x
Article
Google Scholar
Piché MÈ, Auclair A, Harvey J, Marceau S, Poirier P (2015) How to choose and use bariatric surgery in 2015. Can J Cardiol. 31:153–166
Article
PubMed
Google Scholar
Dadson P, Landini L, Helmiö M, Hannukainen JC, Immonen H, Honka MJ, Bucci M, Savisto N, Soinio M, Salminen P, Parkkola R, Pihlajamäki J, Iozzo P, Ferrannini E, Nuutila P (2016) Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care 39:292–299. https://doi.org/10.2337/dc15-1447
Article
CAS
PubMed
Google Scholar
Sjöström L (2013) Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med. 273:219–234
Article
PubMed
Google Scholar
Fisher DP, Johnson E, Haneuse S, Arterburn D, Coleman KJ, O’Connor PJ, O’Brien R, Bogart A, Theis MK, Anau J, Schroeder EB, Sidney S (2018) Association between bariatric surgery and macrovascular disease outcomes in patients with type 2 diabetes and severe obesity. JAMA 320:1570–1582. https://doi.org/10.1001/jama.2018.14619
Article
PubMed
PubMed Central
Google Scholar
McCloskey CA, Ramani GV, Mathier MA, Schauer PR, Eid GM, Mattar SG, Courcoulas AP, Ramanathan R (2007) Bariatric surgery improves cardiac function in morbidly obese patients with severe cardiomyopathy. Surg Obes Relat Dis 3:503–507. https://doi.org/10.1016/j.soard.2007.05.006
Article
CAS
PubMed
Google Scholar
Ramani GV, McCloskey C, Ramanathan RC, Mathier MA (2008) Safety and efficacy of bariatric surgery in morbidly obese patients with severe systolic heart failure. Clin Cardiol 31:516–520. https://doi.org/10.1002/clc.20315
Article
PubMed
PubMed Central
Google Scholar
Whelton PK, Appel L, Charleston J, Dalcin AT, Ewart C, Fried L, Kaidy D, Klag MJ, Kumanyika S, Steffen L, Walker WG, Oberman A, Counts K, Hataway H, Raczynski J, Rappaport N, Weinsier R, Borhani NO, Bernauer E, Borhani P, de la Cruz C, Ertl A, Heustis D, Lee M, Lovelace W, O’Connor E, Peel L (1992) The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels: results of the trials of hypertension prevention, phase I. JAMA 267:1213–1220. https://doi.org/10.1001/jama.1992.03480090061028
Article
Google Scholar
Barzilay JI, Davis BR, Bettencourt J, Margolis KL, Goff DC, Black H, Habib G, Ellsworth A, Force RW, Wiegmann T, Ciocon JO, Basile JN (2004) Cardiovascular outcomes using doxazosin vs. chlorthalidone for the treatment of hypertension in older adults with and without glucose disorders: a report from the ALLHAT study. J Clin Hypertens (Greenwich) 6:116–125. https://doi.org/10.1111/j.1524-6175.2004.03216.x
Article
CAS
Google Scholar
Weber MA, Bakris GL, Jamerson K, Weir M, Kjeldsen SE, Devereux RB, Velazquez EJ, Dahlöf B, Kelly RY, Hua TA, Hester A, Pitt B (2010) Cardiovascular events during differing hypertension therapies in patients with diabetes. J Am Coll Cardiol 56:77–85. https://doi.org/10.1016/j.jacc.2010.02.046
Article
CAS
PubMed
Google Scholar
Palmer SC, Mavridis D, Navarese E, Craig JC, Tonelli M, Salanti G, Wiebe N, Ruospo M, Wheeler DC, Strippoli GFM (2015) Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 385:2047–2056. https://doi.org/10.1016/S0140-6736(14)62459-4
Article
CAS
PubMed
Google Scholar
Catalá-López F, Macías Saint-Gerons D, González-Bermejo D, Rosano GM, Davis BR, Ridao M, Zaragoza A, Montero-Corominas D, Tobías A, de la Fuente-Honrubia C, Tabarés-Seisdedos R, Hutton B (2016) Cardiovascular and renal outcomes of renin–angiotensin system blockade in adult patients with diabetes mellitus: a systematic review with network meta-analyses. Plos Med 13:e1001971. https://doi.org/10.1371/journal.pmed.1001971
Article
PubMed
PubMed Central
Google Scholar
Turner R, Holman R, Stratton I, Cull C, Frighi V, Manley S, Matthews D, Neil A, McElroy H, Kohner E, Fox C, Hadden D, Wright D (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br Med J 317:703–713. https://doi.org/10.1136/bmj.317.7160.703
Article
Google Scholar
Cushman WC, Evans GW, Byington RP, Goff DC, Grimm RH, Cutler JA, Simons-Morton DG, Basile JN, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F (2010) Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 362:1575–1585. https://doi.org/10.1056/NEJMoa1001286
Article
CAS
PubMed
Google Scholar
Kaur R, Kaur M, Singh J (2018) Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 17:121
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein S, Sheard NF, Pi-Sunyer X, Daly A, Wylie-Rosett J, Kulkarni K, Clark NG (2004) Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies - a statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American S. Diabetes Care 27:2067–2073
Article
PubMed
Google Scholar
Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, Hill JO, Brancati FL, Peters A, Wagenknecht L (2011) Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 34:1481–1486. https://doi.org/10.2337/dc10-2415
Article
CAS
PubMed
PubMed Central
Google Scholar
Jialal I, Vikram N (2017) Nutrition therapy for diabetes: implications for decreasing cardiovascular complications. J. Diabetes Complications 31:1477–1480
Article
Google Scholar
Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, De Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC, Sperling L, Virani SS, Yeboah J (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139:E1082–E1143
PubMed
Google Scholar
Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364:685–696. https://doi.org/10.1016/S0140-6736(04)16895-5
Article
CAS
PubMed
Google Scholar
LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, Gotto AM, Greten H, Kastelein JJP, Shepherd J, Wenger NK (2005) Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 352:1425–1435. https://doi.org/10.1056/NEJMoa050461
Article
CAS
PubMed
Google Scholar
Brown BG, Zhao XQ, Chait A, Fisher LD, Cheung MC, Morse JS, Dowdy AA, Marino EK, Bolson EL, Alaupovic P, Frohlich J, Serafini L, Huss-Frechette E, Wang S, DeAngelis D, Dodek A, Albers JJ (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345:1583–1592. https://doi.org/10.1056/NEJMoa011090
Article
CAS
PubMed
Google Scholar
Pop-Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL, Sommer C, Cleary PA, Lachin JM, Herman WH (2009) Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the diabetes control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC). Circulation 119:2886–2893. https://doi.org/10.1161/CIRCULATIONAHA.108.837369
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagidipati NJ, Navar AM, Pieper KS, Green JB, Bethel MA, Armstrong PW, Josse RG, McGuire DK, Lokhnygina Y, Cornel JH, Halvorsen S, Strandberg TE, Delibasi T, Holman RR, Peterson ED (2017) Secondary prevention of cardiovascular disease in patients with type 2 diabetes mellitus: international insights from the TECOS trial (trial evaluating cardiovascular outcomes with sitagliptin). Circulation 136:1193–1203. https://doi.org/10.1161/CIRCULATIONAHA.117.027252
Article
PubMed
PubMed Central
Google Scholar
Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115:387–397
Article
PubMed
Google Scholar
Cardiomyopathy | NHLBI, NIH. https://www.nhlbi.nih.gov/health-topics/cardiomyopathy. Accessed 6 Sept 2020
Huynh K, Bernardo BC, McMullen JR, Ritchie RH (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 142:375–415
Article
CAS
PubMed
Google Scholar
Dahlén EM, Tengblad A, Länne T, Clinchy B, Ernerudh J, Nystrom FH, Östgren CJ (2014) Abdominal obesity and low-grade systemic inflammation as markers of subclinical organ damage in type 2 diabetes. Diabetes Metab 40:76–81. https://doi.org/10.1016/j.diabet.2013.10.006
Article
CAS
PubMed
Google Scholar
Qiao L, Li X (2014) Role of chronic inflammation in cancers of the gastrointestinal system and the liver: where we are now. Cancer Lett 345:150–152
Article
CAS
PubMed
Google Scholar
Steinberg GR, Schertzer JD (2014) AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: Implications for diabetes and cardiovascular disease. Immunol Cell Biol 92:340–345
Article
CAS
PubMed
Google Scholar
Costa AGV, Garcia-Diaz DF, Jimenez P, Silva PI (2013) Bioactive compounds and health benefits of exotic tropical red-black berries. J Funct Foods 5:539–549
Article
CAS
Google Scholar
Hutchins-Wolfbrandt A, Mistry AM (2011) Dietary turmeric potentially reduces the risk of cancer. Asian Pac J Cancer Prev 12:3169–3173
PubMed
Google Scholar
Alves NEG, Enes BN, Martino HSD, Alfenas RDCG, Ribeiro SMR (2014) Meal replacement based on human ration modulates metabolic risk factors during body weight loss: a randomized controlled trial. Eur J Nutr 53:939–950. https://doi.org/10.1007/s00394-013-0598-3
Article
CAS
PubMed
Google Scholar
Gironés-Vilaplana A, Moreno DA, García-Viguera C (2014) Phytochemistry and biological activity of Spanish citrus fruits. Food Funct 5:764–772. https://doi.org/10.1039/c3fo60700c
Article
CAS
PubMed
Google Scholar
Schreckinger ME, Wang J, Yousef G, Lila MA, De Mejia EG (2010) Antioxidant capacity and in vitro inhibition of adipogenesis and inflammation by phenolic extracts of Vaccinium floribundum and Aristotelia chilensis. J Agric Food Chem 58:8966–8976. https://doi.org/10.1021/jf100975m
Article
CAS
PubMed
Google Scholar
Tinkov AA, Nemereshina ON, Popova EV, Polyakova VS, Gritsenko VA, Nikonorov AA (2014) Plantago maxima leaves extract inhibits adipogenic action of a high-fat diet in female Wistar rats. Eur J Nutr 53:831–842. https://doi.org/10.1007/s00394-013-0587-6
Article
CAS
PubMed
Google Scholar
Chuang CC, McIntosh MK (2011) Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu Rev Nutr 31:155–176. https://doi.org/10.1146/annurev-nutr-072610-145149
Article
CAS
PubMed
Google Scholar
Taing MW, Pierson JT, Hoang VLT, Shaw PN, Dietzgen RG, Gidley MJ, Roberts-Thomson SJ, Monteith GR (2012) Mango fruit peel and flesh extracts affect adipogenesis in 3T3-L1 cells. Food Funct 3:828–836. https://doi.org/10.1039/c2fo30073g
Article
CAS
PubMed
Google Scholar
Williams DJ, Edwards D, Hamernig I, Jian L, James AP, Johnson SK, Tapsell LC (2013) Vegetables containing phytochemicals with potential anti-obesity properties: a review. Food Res Int 52:323–333
Article
CAS
Google Scholar
Horsfield K, Cumming G (1968) Morphology of the bronchial tree in man. J Appl Physiol 24:373–383. https://doi.org/10.1152/jappl.1968.24.3.373
Article
CAS
PubMed
Google Scholar
Appel LJ (2003) Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. J Am Med Assoc 289:2083–2093. https://doi.org/10.1001/jama.289.16.2083
Article
Google Scholar
Juraschek SP, Miller ER, Weaver CM, Appel LJ (2017) Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol 70:2841–2848. https://doi.org/10.1016/j.jacc.2017.10.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Young DR, Hivert MF, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT, Lewis CE, Owen N, Perry CK, Siddique J, Yong CM (2016) Sedentary behavior and cardiovascular morbidity and mortality: a science advisory from the American Heart Association. Circulation 134:e262–e279. https://doi.org/10.1161/CIR.0000000000000440
Article
PubMed
Google Scholar
James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC, Svetkey LP, Taler SJ, Townsend RR, Wright JT, Narva AS, Ortiz E (2014) 2014 Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311:507–520
Article
CAS
PubMed
Google Scholar
Arauz-Pacheco C, Parrott MA, Raskin P (2002) The treatment of hypertension in adult patients with diabetes. Diabetes Care 25:134–147. https://doi.org/10.2337/diacare.25.1.134
Article
PubMed
Google Scholar
Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, Fuchs FD, Hughes JW, Lackland DT, Staffileno BA, Townsend RR, Rajagopalan S (2013) Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the American Heart Association. Hypertension 61:1360–1383. https://doi.org/10.1161/HYP.0b013e318293645f
Article
CAS
PubMed
Google Scholar
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39:2065–2079
Article
PubMed
PubMed Central
Google Scholar
Semlitsch T, Jeitler K, Berghold A, Horvath K, Posch N, Poggenburg S (2016) Siebenhofer A (2016) Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst Rev 3(3):CD008274
Shaw JE, Punjabi NM, Naughton MT, Willes L, Bergenstal RM, Cistulli PA, Fulcher GR, Richards GN, Zimmet PZ (2016) The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir Crit Care Med 194:486–492. https://doi.org/10.1164/rccm.201511-2260OC
Article
CAS
PubMed
Google Scholar
Association AD (2019) 15. Diabetes care in the hospital: standards of medical care in diabetes 2019. Diabetes Care 42:S173–S181. https://doi.org/10.2337/dc19-S015
Article
Google Scholar
Wu L, Piotrowski K, Rau T, Waldmann E, Broedl UC, Demmelmair H, Koletzko B, Stark RG, Nagel JM, Mantzoros CS, Parhofer KG (2014) Walnut-enriched diet reduces fasting non-hdl-cholesterol and apolipoprotein B in healthy caucasian subjects: a randomized controlled cross-over clinical trial. Metabolism 63:382–391. https://doi.org/10.1016/j.metabol.2013.11.005
Article
CAS
PubMed
Google Scholar
Franks PW, Pearson E, Florez JC (2013) Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 36:1413–1421
Article
CAS
PubMed
PubMed Central
Google Scholar
Reinehr T, Friedel S, Mueller TD, Toschke AM, Hebebrand J, Hinney A (2008) Evidence for an influence of TCF7L2 polymorphism rs7903146 on insulin resistance and sensitivity indices in overweight children and adolescents during a lifestyle intervention. Int J Obes 32:1521–1524. https://doi.org/10.1038/ijo.2008.146
Article
CAS
Google Scholar
Cornelis MC, Hu FB (2012) Gene-environment interactions in the development of type 2 diabetes: recent progress and continuing challenges. Annu Rev Nutr. 32:245–259
Article
CAS
PubMed
Google Scholar
TO K, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hyppönen E, Cauchi S, He M, Kutalik Z, Kumari M, Stančáková A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, van Vliet-Ostaptchouk JV, Onland-Moret NC (2011) Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. Plos Med 8:e1001116. https://doi.org/10.1371/journal.pmed.1001116
Article
Google Scholar
Nettleton JA, McKeown NM, Kanoni S, Lemaitre RN, Hivert MF, Ngwa J, Van Rooij FJA, Sonestedt E, Wojczynski MK, Ye Z, Tanaka T, Garcia M, Anderson JS, Follis JL, Djousse L, Mukamal K, Papoutsakis C, Mozaffarian D, Zillikens MC, Bandinelli S, Bennett AJ, Borecki IB, Feitosa MF, Ferrucci L, Forouhi NG, Groves CJ (2010) Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies. Diabetes Care 33:2684–2691
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Guo X, Guo J, He Q, Li H, Song Y, Zhang H (2014) Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx. Sci Rep 4:1–10. https://doi.org/10.1038/srep05654
Article
CAS
Google Scholar
Kim MG, Elizabeth R, Claudia WB, Judith WR, Jerome M, Charles E (2003) REAP and WAVE: New Tools to Rapidly Assess/Discuss Nutrition with Patients. J Nutrition 133(2);556S–562S.
Evert AB, Dennison M, Gardner CD, Timothy Garvey W, Karen Lau KH, MacLeod J, Mitri J, Pereira RF, Rawlings K, Robinson S, Saslow L, Uelmen S, Urbanski PB, Yancy WS (2019) Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 42:731–754
Article
PubMed
PubMed Central
Google Scholar
Daly A, Michael P, Johnson EQ, Harrington CC, Patrick S, Bender T (2009) Diabetes white paper: defining the delivery of nutrition services in medicare medical nutrition therapy vs medicare diabetes self-management training programs. J Am Diet Assoc 109:528–539. https://doi.org/10.1016/j.jada.2008.11.004
Article
PubMed
Google Scholar
Pastors JG, Warshaw H, Daly A, Franz M, Kulkarni K (2002) The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care 25:608–613
Article
PubMed
Google Scholar
Bailey CJ, Grant PJ, Evans M, De Fine ON, Andreasen AH, Fowler PBS, Good CB, Turner RC, Holman R, Stratton I, Kerner W (1998) The UK prospective diabetes study (multiple letters) [1]. Lancet 352:1932–1934
Article
CAS
PubMed
Google Scholar
Cholesterol Treatment Trialists’ (CTT) Collaborators (2008) Efficacy of cholesterol-lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125. https://doi.org/10.1016/S0140-6736(08)60104-X
Article
CAS
Google Scholar
Program NHBPE (2004) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute (US). United States
Franz MJ, Powers MA, Leontos C, Holzmeister LA, Kulkarni K, Monk A, Wedel N, Gradwell E (2010) The evidence for medical nutrition therapy for type 1 and type 2 diabetes in adults. J Am Diet Assoc 110:1852–1889. https://doi.org/10.1016/j.jada.2010.09.014
Article
PubMed
Google Scholar
Al-Shookri A, Khor GL, Chan YM, Loke SC, Al-Maskari M (2012) Effectiveness of medical nutrition treatment delivered by dietitians on glycaemic outcomes and lipid profiles of Arab, Omani patients with type 2 diabetes. Diabet Med 29:236–244. https://doi.org/10.1111/j.1464-5491.2011.03405.x
Article
CAS
PubMed
Google Scholar
Amiel S, Beveridge S, Bradley C, Gianfrancesco C, Heller S, James P, McKeown N, Newton L, Newton D, Oliver L, Reid H, Roberts S, Robson S, Rollingson J, Scott V, Speight J, Taylor C, Thompson G, Turner E, Wright F (2002) Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. Br Med J 325:746–749. https://doi.org/10.1136/bmj.325.7367.746
Article
Google Scholar
Suresh S, Pathak S (2005) Chronotherapeutics: emerging role of biorhythms in optimizing drug therapy. Indian J. Pharm. Sci. 67:135–140
CAS
Google Scholar
Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27 485 people. Occup Environ Med 58:747–752. https://doi.org/10.1136/oem.58.11.747
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106:4453–4458. https://doi.org/10.1073/pnas.0808180106
Article
PubMed
PubMed Central
Google Scholar
Carroll MF, Hardy KJ, Burge MR, Schade DS (2002) Frequency of the dawn phenomenon in type 2 diabetes: implications for diabetes therapy. Diabetes Technol Ther 4:595–605. https://doi.org/10.1089/152091502320798213
Article
PubMed
Google Scholar
Kandaswamy E, Zuo L (2018) Recent advances in treatment of coronary artery disease: role of science and technology. Int J Mol Sci 19(2):424
Forrestel AC, Miedlich SU, Yurcheshen M, Wittlin SD, Sellix MT (2017) Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia 60:808–822
Article
CAS
PubMed
Google Scholar
Turner RC, Holman RR, Matthews DR, Oakes SF, Bassett RA, Stratton IM, Cull CA, Manley SE, Frighi V (1991) UK prospective diabetes study (UKPDS) - VIII. Study design, progress and performance. Diabetologia 34:877–890. https://doi.org/10.1007/BF00400195
Article
Google Scholar
Nathan DM (2014) The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37:9–16. https://doi.org/10.2337/dc13-2112
Article
CAS
PubMed
Google Scholar
Vaccaro O, Franzini L, Miccoli R, Cavalot F, Ardigò D, Boemi M, De Feo P, Reboldi G, Rivellese AA, Trovati M, Zavaroni I (2013) Feasibility and effectiveness in clinical practice of a multifactorial intervention for the reduction of cardiovascular risk in patients with type 2 diabetes: the 2-year interim analysis of the MIND.IT study: a cluster randomized trial. Diabetes Care 36:2566–2572. https://doi.org/10.2337/dc12-1781
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Yu M, Zhou T, Zhang S, He G, Wang G, Gang X (2019) Current advances in the study of diabetic cardiomyopathy: from clinicopathological features to molecular therapeutics (review). Mol Med Rep 20:2051–2062. https://doi.org/10.3892/mmr.2019.10473
Article
CAS
PubMed
Google Scholar
Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, TO O, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca P, Im KA, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372:2387–2397. https://doi.org/10.1056/NEJMoa1410489
Article
CAS
PubMed
Google Scholar